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Abstract

Many data service platforms use local file systems as

their backend storage. Although this approach offers ad-

vantages in portability, extensibility, and ease of devel-

opment, it may suffer from severe performance degra-

dation if the mapping between the services required by

the data service platform and the functions provided by

the local file system is not carefully managed. This pa-

per presents in-depth analysis of performance problems

in current data service platforms that use file systems as

their backend storage and proposes three novel strate-

gies that are essential to solving the current performance

problems. We demonstrate the efficacy of our strate-

gies by implementing a prototype object store in Ceph,

called SwimStore (Shadowing with Immutable Metadata

Store). We experimentally show that SwimStore pro-

vides high performance with little variation, as well as

a large reduction in write traffic.

1 Introduction

We are witnessing an explosive growth of digital data

both in volume and variety. To cope with such

rapidly growing unstructured data, there has been a

surge of interest in data service platforms such as dis-

tributed NoSQL systems like BigTable [2], Cassan-

dra [5], HBase [8], MongoDB [17], Ceph [32], Swift [1],

distributed file systems like GFS [6] and HDFS [25],

and embedded key-value stores like LevelDB [7], Hy-

perLevelDB [10], and RocksDB [3].

Most data service platforms use a layered approach

rather than building the platform end-to-end. For exam-

ple, BigTable [2] and HBase [8] rely on a distributed file

system underneath, which is subsequently backed by a

local file system. Cassandra [5] and MongoDB [17] use

a per-node storage engine that is typically running atop

a file system. Embedded key-value stores such as Lev-

elDB [7] and RocksDB [3] employ a local file system as

their storage backend. The fundamental rationale behind

this layered architecture is abstraction. Abstracting away

underlying details, the layered approach permits ease of

development and maintenance in building a complicated

data service platform.

A layered approach, however, sometimes backfires

when the lower layer was not originally designed for the

upper layer; that is the case between many data service

platforms and the local file system underneath. Most of

file systems today and their POSIX standard interface

were not intended to serve as a local storage engine for

other data service platforms, so as it has been pointed out

in [31], there is a mismatch between the two, both inside

and outside.

Inside, local file systems are optimized for system-

wide performance and reliability, largely ignoring de-

mands from individual applications. Thus, the upper

layer applications have very little control over what’s

going on inside the file system. As a result, the up-

per layer can suffer from degraded QoS (Quality-of-

Service) resulting from unintended and unexpected en-

tanglement [14] within the file system. Such entangle-

ment arises, for example, from periodic flushing of dirty

blocks and journaling for consistent metadata update.

Both techniques aim to fulfill the file system’s original

objectives (the former for enhancing system-wide perfor-

mance and the latter for improving reliability), but they

can potentially lead to serious performance fluctuations,

which greatly degrade the QoS.

Outside, local file systems do not provide support for

atomic update, which is a crucial functionality required

from the underlying storage backend in data service plat-

forms.1 This functional mismatch forces data service

platforms to use write-ahead logging [16, 22], resulting

in significant increase in write traffic due to double writes

(one to the log and the other to home locations)2. In ad-

dition to the traffic increase, the double writes adversely

affect the QoS due to periodic flushing of dirty blocks,

one form of entanglement in the file system.

To address the performance problems arising from the

mismatch, two approaches have been actively pursued

in recent years. The first approach, as exemplified by

BlueStore [31], an object store for Ceph, is to bypass the

file system and access the raw block device directly. This

bare-bones approach has a performance advantage over

the one with a file system as an intermediary. However, it

suffers from the loss of numerous advantages of the file

system abstraction such as portability, extensibility, and

1The O ATOMIC flag support is underway in XFS, but it is neither

yet supported in the mainstream kernel nor considered in other file sys-

tems [9, 29].
2Many file systems use journaling, a form of write-ahead logging,

internally but its purpose is for guaranteeing consistency of the file sys-

tem’s data and metadata, not for supporting an interface for an atomic

write [15, 23, 27, 28].



Table 1: Summary of Data Service Platforms.

Type Platform
Backend Structure

within a File System

Data Integrity

Support

Target

Environment

Key-value store RocksDB, LevelDB, HyperLevelDB LSM Tree Logging Local

Dynamo LSM Tree Logging Distributed

Document store MongoDB, CouchDB LSM Tree Logging Distributed

Column store HBase, BigTable, Cassandra LSM Tree Logging Distributed

Object store Ceph, Swift Store item as a File Logging Distributed

Distr. File System GFS, HDFS Store item as a File Logging Distributed

ease of development.

The second approach is to add new features such as

atomic update to the file system interface [26, 33, 9].

This approach might remedy the performance problem,

but results in a loss of generality by optimizing the file

system for specific workloads.

Our approach is different; we use the file system and

the POSIX standard interface as they are, but use files

in a manner that minimizes the inefficiency of layer-

ing and takes better control over the performance. To

this end, we first analyze the current data service plat-

forms in terms of the performance and controllability,

particularly correlating them with the underlying file sys-

tem workings. Then, we present a set of strategies to

store unstructured data items over a file system achiev-

ing higher performance and QoS. The first strategy is to

use files as metadata immutable containers for storing

data items much like a virtual disk file that stores the

contents of a virtual machine’s hard disk drive [30]. This

approach eliminates not only most of metadata update in

the file system but also, and more importantly, write traf-

fic fluctuations arising from forcing the metadata, which

is needed to maintain the file system consistency. We

also use multiple container files of different allocation

unit sizes to minimize the complexity arising from frag-

mentation.

Second, we use in-file shadow paging to eliminate the

double write problem associated with the write-ahead

logging approach. Although we use shadow paging, we

do not have to address the accompanying garbage col-

lection issue since the underlying file system provides a

level of indirection and thus the garbage collection can

easily be performed by deallocating blocks associated

with the garbage using the hole punching feature [12]

supported by most modern file systems. Also, we make

use of intent logging to implement a transaction where

data update by shadow paging is one type of record,

which points to the target area of update. Finally, we use

a variation of the transactional checksum [19] to remove

the ordering between the data update and log write.

As a proof of concept, we implement a prototype ob-

ject store for Ceph called SwimStore (ShadoWing with

Immutable Metadata Store) built atop a local file system

The measurement study shows that SwimStore improves

the performance by twofold, reducing the write traffic by

more than a half, compared to other object stores in Ceph

such as FileStore and KStore. Even when compared with

BlueStore, which bypasses the file system and accesses

the raw block device directly, SwimStore performs com-

petitively while retaining all the benefits of the file sys-

tem abstraction.

2 Overview of Data Service Platforms

The data service platforms mostly rely on a local file sys-

tem for their final backend storage, while a raw block de-

vice is accessed directly on some occasions. This trend

raises one central question: what is the best way to store

unstructured data atop a local file system? To find an an-

swer to this question, we classify data service platforms

into two types, according to how they store data items

over a local file system, and investigate strengths and

weaknesses of each type. Table 1 summarizes the key

features of data service platforms.

Packing: This architecture maintains multiple items in a

single file. The most common instance of this architec-

ture is the log-structured merge tree (LSM tree), which

is extensively used as in-file data structures in numerous

key-value stores [3, 7, 10, 34, 13]. The LSM tree buffers

data items in memory and batches them into a file when

the amount of written data reaches the limit [21]. The

data items are maintained in sorted order by key, man-

aged by a skip list in memory [20] and by a sorted-string

table (sstable) within a file. The multiple sstables are pe-

riodically merged into fewer ones for better read perfor-

mance and space reclaiming, which is called compaction.

The LSM tree has the advantage of using the full band-

width of the underlying storage, translating small sized

updates into a sequential write stream [18]. Moreover,

keeping data in sorted order makes it possible to retrieve

data with O(log(n)) complexity and to process a range

query quickly without any additional indexing.

However, the LSM tree originally targets the small

data items, and thus it does not perform well for large

writes. When a write is large, the memory buffer fills up

quickly, forcing a frequent flush of buffered data. This

activity results in a large number of sstables that con-
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Figure 1: Average IOPS and the Performance Change over Time. We run 16 threads each issuing 4KB and 1MB

object writes for 60s. The leftmost figure shows that KStore provides 1.58x higher average IOPS than FileStore for

small writes, while FileStore outperforms KStore by 2.3x for large writes. The rest of figures show the throughput of

two object stores over time (indicated by a black line), in conjunction of the write traffic caused by the background

activities, such as a periodic flush of a file system and a compaction operation in key-value stores.

tains only a few items but also have ranges that overlap

with others. In this situation, the cost of data retrieval in-

creases significantly because a system has to search mul-

tiple sstables that have a range encompassing the target

key. To avoid this weakness, the compaction must be per-

formed at short intervals so as to make a globally sorted

sequence of data items. Unfortunately, the write ampli-

fication by compaction is exceedingly destructive when

the write size is large because the performance is dictated

by the total amount of write traffic.

Furthermore, in the packing architecture, the par-

tial update of data items is challenging. Thus, LSM

tree based key-value stores handle such operations (e.g.,

append, update, or truncate) by inserting an updated

data item as a whole, which is particularly expensive for

large data.

Mapping: This architecture associates a data item with

a file, and it is mainly used in distributed object stores

(e.g., Ceph, Swift) and distributed file systems (e.g.,

GFS, HDFS). As opposed to key-value stores, these sys-

tems are designed to target on large items. HDFS pro-

cesses data on a block granularity whose default size is

64MB. Ceph’s object store was originally meant to be

a backend for a distributed file system in which the ob-

jects are multiple MBs. The primary benefit of this ap-

proach lies in the increased developer velocity. By asso-

ciating a data item with a file, we can rely on a number

of great functionalities of a file system, such as indexing,

caching, and space management, instead of developing

them from scratch. Furthermore, as most of these mech-

anisms have been carefully designed and heavily tested

over past decades, their use can help to improve system

reliability. Also, the partial manipulation of items be-

comes easier because the file systems already support

such functions for file components.

However, this approach also has a downside. First,

this design, which is tightly coupled with the file system
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Figure 2: Write Traffic Break-down.

causes the data service platform to be greatly affected by

file system internal activity. As a result, data service plat-

forms might confront unexpected delay or performance

oscillation incurred by out-of-control workings of the un-

derlying file systems.

In addition, the high dependency on the file system

facilities implies that the implementation efficiency can

be severely constrained by the limited POSIX APIs. For

example, maintaining additional metadata for data items

is not easy when those items are stored as a file because

conventional file systems allow only a limited number of

attributes for a file, and these limitations even vary across

file systems.

Besides this, the absence of required operations such

as atomic updates and efficient file grouping / splitting,

and file enumeration in sorted order lead us to suffer from

sub-optimal performance in many cases. Finally, the file

system metadata can be a burden in the presence of a

myriad of files, amplifying write traffic greatly, particu-

larly for small data items.

3 Quantitative Analysis

We perform a quantitative analysis on current backend

storage architectures, particularly focusing on the corre-

lation between their performance and the underlying file

system behaviors.

Experimental Setup: Our empirical study is performed

using Ceph [32], a distributed object store platform, be-
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cause it enables the fair comparison of two architectures

by offering an option for choosing backend storage be-

tween packing (KStore) and mapping (FileStore) archi-

tectures [11]. KStore is an object store provided by Ceph

that manages data using embedded key-value store (i.e.,

RocksDB), representing the packing architecture. File-

Store, which is also in Ceph, stores each object as a file,

representing the mapping architecture. By comparing

these object stores, we examine how different backend

storage architectures of the NoSQL systems work in gen-

eral for various environments.

All our experiments are performed on Amazon EC2

clusters; each machine consists of Intel Xeon quad-core

running at 2.5GHz, 16GB DDR, and two 256 GiB SSDs.

We use Ubuntu Server 16.04 and XFS file system.

Performance: We investigate the performance of differ-

ent backend architectures with respect to the object size

by measuring the IOPS of KStore (packing) and File-

Store (mapping) writing 4KB and 1MB objects. Figure

1 shows that KStore provides 1.57x higher IOPS than

FileStore for small writes, while FileStore outperforms

KStore by 1.6x for large writes. We attribute the low

performance of FileStore in small writes to the severe

metadata overhead coming from file creation and index-

ing, which is mostly offset in large writes. On contrary,

the LSM tree based packing architecture turns out to be a

poor fit for handling large objects, supposedly due to the

frequent compaction and resultant write amplification.

Write Amplification: To validate our reasoning, we

measure the total write traffic for each scenario and break

down it according to where it comes from. Figure 2

shows FileStore amplifies write traffic by 8.8x for small

writes, leading to the huge write amplification by a file

system. When the objects are large, KStore yields larger

write amplification than FileStore, paying the additional

cost for compaction. Note that FileStore has no com-

paction because it does not keep objects sorted, depend-

ing on file system facilities for object retrieval or traver-

sal. In both object stores, the double-write penalty is ob-

served which arises from write-ahead logging.

Controllability: Figure 1 shows the performance change

over time when writing small and large objects for 60s.

We can see that FileStore suffers from the periodic per-

formance fluctuation both in small and large writes. In

this case, the performance jitter results from the periodic

bulky writes invoked by the background file system ac-

tivities. Specifically, FileStore uses buffered I/O by de-

fault, in which updates are buffered in a page cache and

batched to storage by a periodic flush daemon or a jour-

naling commit process. This mechanism increases over-

all I/O performance, but it is detrimental for QoS because

it can slow down a system at untimely point.

KStore manifests with different patterns of perfor-

mance spikes. Our detailed analysis reveals that the

cause of performance fluctuation here lies in the user-

level activity (i.e., compaction), not a file system. Be-

cause RocksDB (operating in KStore) holds data in a

user-level buffer, instead of making use of the system-

level page cache, it can avoid the unexpected delay

rooted from a page cache. However, without careful con-

sideration, this approach can suffer from a more serious

performance problem. For an example, as illustrated in

Figure 1, KStore provides a poor performance in large

writes, because the frequent compaction of RocksDB de-

creases I/O bandwidth significantly.

4 SwimStore

In the previous section, we examined the pros and cons

of two different backend architectures that run atop a lo-

cal file system. In this section, we present SwimStore,

a new backend storage architecture that pursues the fol-

lowing goals: (1) providing excellent performance for

various sizes of data, (2) taming performance oscillation

by minimizing out-of-control background activities (e.g.,

compaction, periodic flush) (3) reducing write amplifica-

tion by eliminating the logging and metadata overhead.

We achieve these goals with three key strategies.

Metadata Immutable Container: Metadata updates are

a main source of performance degradation when using

a file system as a backend storage. They are particu-

larly problematic when the small data is stored as a file,

like in FileStore. Creating a new file, although con-

ceptually simple, involves the update of numerous types

of metadata and incurs significant overheads. To avoid

this overhead, we use a file as a container for multiple

data items thereby amortizing its creation overheads over

them. Furthermore, we make the container metadata im-

mutable meaning that the container does not incur the

file metadata manipulation when storing objects within

it. This concept is realized by creating a group of pre-

allocated files at deployment, eliminating all of the run-

time metadata updates associated with file creations and

space allocation.

In-file Shadow Paging: Another problem of using a file

system as a storage backend is double writes resulting

from write-ahead logging. This behavior can be more

harmful in large writes where the performance is deter-

mined by the total I/O traffic. Moreover, the writes to

the file system after logging are performed by buffered

I/Os, which introduce fluctuations in write traffic by pe-

riodic flushings. In SwimStore, we use a shadow paging

technique where data update is made in an out-of-place

manner and the space taken up by old data is recycled

after the update is persisted [22]. In SwimStore, the out-

of-place update is made to a free area in the container

file with the O DIRECT and O DSYNC flags set. This syn-
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chronous update may increase the response time but its

delay can be made comparable to accessing the raw de-

vice directly by pre-allocating the file data blocks in ad-

vance. Indeed, the shadowing technique is hard to use in

conjunction with the LSM tree, because its synchronous

and out-of-place write does not allow items to be sorted

in a memory buffer, forcing every write to storage.

Note that a write request, which needs to be handled

with atomicity in the object store, comprises a series of

sub-operations involving updates of multiple data and

metadata [4]. To make all updates take place by a primi-

tive action, we use a small intent log that records the lo-

cation of target data (e.g., file name, offset, and length),

and the associated metadata. In the intent log, we record

a checksum over not only the data written but also includ-

ing all the log records of the transaction, thereby safely

recovering from a crash without ordering constraints.

Slotted Allocation with Hole-punching: In shadow

paging, after a data is updated, the old copy becomes

garbage and needs to be recycled to make free space. The

free space management in general and garbage collec-

tion in particular are one of the most difficult problems

in storage management systems [24]. Our approach in

this paper is to use multiple container files whose alloca-

tion unit sizes are recursively doubled. For example, the

first container file may have an allocation unit size of 4

KiB, the second 8 KiB, etc. With this setting, when new

data is written, its space allocation is made by the con-

tainer file whose allocation unit size is best fit. Also, the

whole unit is allocated to avoid the need to manage frag-

ments. Similarly, when the allocated space is recycled,

the whole allocation unit is returned.

This space management enables to avoid external

fragmentation, but it impedes the aggregation of multi-

ple writes, which is particularly useful optimization for

highly concurrent workloads. To hold onto the bene-

fits of aggregated I/O, SwimStore makes use of the hole

punching feature [12] supported by most modern file sys-

tems along with slotted allocation. The punch-hole func-

tion deallocates physical space associated with the file

range, preventing space waste by the file data not in use.

By using this feature for bursty writes appropriately, we

can achieve the high performance and space efficiency

simultaneously.

5 Performance Evaluation

The prototype of SwimStore is implemented with 12K

LOC in Ceph 12.01 running on Linux 4.4.0. We measure

the performance on the same experimental platforms as

described in § 3. We create ten container files at the

deployment time whose allocation sizes are recursively

doubled (4KB to 2MB). The data blocks of container

files are pre-allocated by means of fallocate system

call. It is noteworthy that Ceph maintains the meta-
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Figure 3: IOPS and Total Write Traffic.

data for each object, such as object name or timestamp.

SwimStore and FileStore both manage the object meta-

data using the embedded key-value store, which is Lev-

elDB here, because metadata updates are mostly small

sized. For performance evaluation, we use the Rados

benchmark offered by Ceph [32] which issues write re-

quests to the object store layer, so as to observe their per-

formances in a more general and clear environment.

Figure 3 compares the IOPS of different object stores

when varying the object size from 4KB to 1MB. For

the more practical analysis, we also study BlueStore,

which currently serves as the default backend storage of

Ceph, managing a raw device directly bypassing a file

system. In the figure, we can observe that SwimStore

provides excellent performance for the full range of ob-

ject sizes. This result is contrast to KStore that delivers

high IOPS for small writes, but provides drastically de-

creased performance for large writes. Compared to File-

Store, SwimStore offers a twofold performance for vary-

ing object sizes. SwimStore also outperforms FileStore

and KStore in terms of the write amplification; FileStore

and KStore have upto 4.8x and 3x more writes, respec-

tively, compared to SwimStore. This result demonstrates

that our strategies devised to reduce the write traffic in

object store is highly effective in a real system.

Figure 3 shows that SwimStore achieves performance

comparable to that of BlueStore without the burden of

managing the raw block device. SwimStore even out-

performs BlueStore for write sizes smaller than 32 KiB.

We attribute this performance advantage for small writes

to an optimization we perform in SwimStore: wherever

possible, we aggregate multiple write operations to im-

prove throughput. We find that this optimization is par-

ticularly useful for highly concurrent workloads, which

are common in data service platforms.

6 Conclusion
This paper presents SwimStore, a backend storage archi-

tecture for data service platforms that achieves high write

performance, low write amplification, and little perfor-

mance variations, running atop a file system. The proto-

type of SwimStore built within Ceph outperforms File-

Store and KStore which also use a file system, and pro-

5



vides at least competitive performance as compared to

BlueStore.
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