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How are complex applications built?  
(for example, Facebook Messages)



Machine 1 Machine 3Machine 2

We have many machines with many disks.
How should we use them to store messages?
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Use HBase for K/V logic
Use HDFS for replication
Use Local FS for allocation
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How are complex applications built?  
(for example, Facebook Messages)



How are complex applications built?  
(for example, Facebook Messages)

Answer: by gluing together
existing components



Conceptual Integrity

Conceptual integrity “dictates that the design must proceed 
from one mind, or from a very small number of agreeing 
resonant minds.”  

~ Frederick Brooks, The Mythical Man-Month



Conceptual Integrity

Conceptual integrity “dictates that the design must proceed 
from one mind, or from a very small number of agreeing 
resonant minds.”  

~ Frederick Brooks, The Mythical Man-Month

Premise: modern applications and storage systems 
are patched together and lack conceptual integrity.



Emergent Properties

Emergent Properties: “properties that are not evident in the 
individual components, but they show up when combining 
those components”  

~ Saltzer and Kaashoek, Principles of Computer System Design

“they might also be called surprises” 



Summarizing Modern Storage

Storage systems benefit from modular 
• Modules divide work 
• Modules enable reuse 

But these systems lack conceptual integrity 

Questions 
• What are the storage needs of modern applications? 
• What impact does modularity have on I/O patterns? 
• How can we better modularize storage systems?



Outline

Motivation: Modularity in Modern Storage 

Overview: Types of Modularity 

Library Study: Apple Desktop Applications 

Layer Study: Facebook Messages 

Microservice Study: Docker Containers 

Slacker: a Lazy Docker Storage Driver 

Conclusions
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In 1974: 

“No large ‘access method’ routines are required to insulate the 
programmer from the system calls; in fact, all user programs either 
call the system directly or use a small library program, only tens of 
instructions long…” 

~ Ritchie and Thompson.  The UNIX Time-Sharing System.

Modern Desktop Applications and Libraries



In the past, applications: 
• Used the file-system API directly 
• Performed simple tasks well 
• Chained together for more complex actions File System

Application
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In the past, applications: 
• Used the file-system API directly 
• Performed simple tasks well 
• Chained together for more complex actions 

Today, we see: 
• Applications are graphically rich,  

multifunctional monoliths 
• “#include <Cocoa/Cocoa.h>  

reads 112,047 lines from 689 files” 
~ Rob Pike ‘10 

• They rely heavily on I/O libraries

Cocoa, Carbon, 
and other frameworks

File System

Developer’s Code

Modern Desktop Applications and Libraries

File System

Application



• iLife suite (multimedia) 

• iPhoto 8.1.1 

• iTunes 9.0.3 

• iMovie 8.0.5

• iWork (like MS Office) 

• Pages 4.0.3  
(Word) 

• Numbers 2.0.3 
(Excel) 

• Keynote 5.0.3 
(PowerPoint)

Our Study
Measure 34 tasks from popular home-user applications

Goal: understand I/O patterns and impact of libraries



• iLife suite (multimedia) 

• iPhoto 8.1.1 

• iTunes 9.0.3 

• iMovie 8.0.5

• iWork (like MS Office) 

• Pages 4.0.3  
(Word) 

• Numbers 2.0.3 
(Excel) 

• Keynote 5.0.3 
(PowerPoint)

Our Study
Measure 34 tasks from popular home-user applications

This talk: look at one task from Pages in detail as case study



A Case Study: Saving a Document
Application: Pages 4.0.3 

• From Apple’s iWork suite 
• Document processor (like Microsoft Word) 

One simple task (from user’s perspective): 
1. Create a new document 
2. Insert 15 JPEG images (each ~2.5MB) 
3. Save to the Microsoft DOC format 

Trace I/O System Calls 
• Instrument with DTrace, record user-space stack traces 
• Relatively little paging from mmap I/O
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Case Study Observations

• Auxiliary files dominate 
• Task’s purpose: create 1 file; observed I/O: 385 files are touched 
• 218 KV store files + 2 SQLite files: 

• Personalized behavior (recently used lists, settings, etc) 
• 118 multimedia files: 

• Rich graphical experience 
• 25 Strings files: 

• Language localization 
• 17 Other files: 

• Auto-save file and others
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Case Study Observations

• Auxiliary files dominate 
• Multiple threads perform I/O 

• Interactive programs must avoid blocking
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Case Study Observations

• Auxiliary files dominate 
• Multiple threads perform I/O 
• Writes are often forced 

• KV-store + SQLite durability 
• Auto-save file
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Case Study Observations

• Auxiliary files dominate 
• Multiple threads perform I/O 
• Writes are often forced 
• Renaming is popular 

• Often used for key-value store 
• Makes updates atomic
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Case Study Observations

• Auxiliary files dominate 
• Multiple threads perform I/O 
• Writes are often forced 
• Renaming is popular 
• A file is not a file 

• DOC format is modeled after a FAT file system 
• Multiple “sub-files” 
• Application manages space allocation
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Case Study Observations

• Auxiliary files dominate 
• Multiple threads perform I/O 
• Writes are often forced 
• Renaming is popular 
• A file is not a file 
• Sequential access is not sequential 

• Multiple sequential runs in a complex file => random accesses
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Case Study Observations

• Auxiliary files dominate 
• Multiple threads perform I/O 
• Writes are often forced 
• Renaming is popular 
• A file is not a file 
• Sequential access is not sequential 
• Frameworks influence I/O 

• Example: update value in page function 
• Cocoa, Carbon are a substantial part of application
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• Sequential access is not sequential 
• Frameworks influence I/O

all findings are general trends across multiple tasks 
(more details in dissertation)



Case Study Observations

• Auxiliary files dominate 
• Multiple threads perform I/O 
• Writes are often forced 
• Renaming is popular 
• A file is not a file 
• Sequential access is not sequential 
• Frameworks influence I/O

all findings are general trends across multiple tasks 
(more details in dissertation)



Noted Effects of Modularity

Described in dissertation: 
• Mismatch between .doc page size and STDIO block size 
• Repeated read-copy-update to same page 
• Open flags are meaningless (O_RDWR overused) 
• Preallocation hints not meaningful 
• Copy abstraction prevents combined use of source 
• Coarse-grained exclusion make fine-grained locks useless 
• Atomicity/durability required for unimportant data
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• Mismatch between .doc page size and STDIO block size 
• Repeated read-copy-update to same page 
• Open flags are meaningless (O_RDWR overused) 
• Preallocation hints not meaningful 
• Copy abstraction prevents combined use of source 
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Use of Fsync
Older studies 
• Baker et al.: 16% of data flushed by app. request (1991) 
• Vogels: “In 1.4% of file opens that had write operations 

posted to them, caching was disabled at open time. Of the 
files that were opened with write caching enabled, 4% actively 
controlled their caching by using the flush requests.” (1999) 

Newer study 
• Kim et al.: SQLite write traffic itself is quite random with plenty 

of synchronous overwrites … apps use the Android interfaces 
oblivious to performance. A particularly striking example is the 
heavy-handed management of application caches through 
SQLite.” (2012)
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Why Study Facebook Messages?
Represents an important type of 
application.  Universal backend for:
▪ Cellphone texts
▪ Chats
▪ Emails

Represents HBase over HDFS
▪ Common backend at Facebook 

and other companies
▪ Similar stack used at Google  

(BigTable over GFS)

Represents layered storage
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Methodology
New tracing layer
▪ Hadoop Trace FS (HTFS)
▪ Collects request details
▪ Reads/writes, offsets, sizes
▪ Not contents

Trace results
▪ 9 shadow machines
▪ Production requests mirrored
▪ 8.3 days
▪ 71TB of HDFS I/O

Messages
HBase

HDFS
Local FS

HDFS Traces

Actual stack
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Actual stack Simulated stack

Local Traces
(inferred)

what -ifs

Local Storage
what -ifs

Simulation Results
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Methodology
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HBase

HDFS
Local FS

HDFS Traces

Actual stack

Background: how does HBase use HDFS?
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HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing
▪ Foreground reads
▪ Compaction
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HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing
▪ Foreground reads
▪ Compaction
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▪ Logging
▪ Flushing
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▪ Flushing and foreground reads are always required



HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing
▪ Foreground reads
▪ Compaction

Baseline I/O:
▪ Flushing and foreground reads are always required

HBase overheads:
▪ Logging: useful for crash recovery (not normal operation)
▪ Compaction: useful for performance (not correctness)



Facebook Messages Outline

Background
Workload Analysis
▪ I/O causes
▪ File size
▪ Sequentiality

Layer Integration
▪ Local compaction
▪ Combined logging

Discussion
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Cross-layer R/W Ratios

Baseline HDFS I/O:
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cache
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misses

All HDFS I/O:

Local FS:

Disk:

1% writes

64%

21%

45%



Layers amplify writes: 1% => 64%
◆  Logging, compaction, and replication increase writes
◆ Caching decreases reads

Workload Analysis Conclusions



Workload Analysis Questions

At each layer, what activities read or write?
How large are created files?
How sequential is I/O?



Created Files: Size Distribution
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Layers amplify writes: 1% => 64%
Files are very small: 90% smaller than 6.3MB 

Workload Analysis Conclusions



Workload Analysis Questions

At each layer, what activities read or write?
How large are created files?
How sequential is I/O?



Reads: Run Size



Reads: Run Size

50% of runs (weighted by I/O) <130KB



Reads: Run Size

80% of files are <256KB



Layers amplify writes: 1% => 64%
Files are very small: 90% smaller than 6.3MB 
Fairly random I/O: 130KB median read run

Workload Analysis Conclusions



Facebook Messages Outline

Background
Workload Analysis
▪ I/O causes
▪ File size
▪ Sequentiality

Layer Integration
▪ Local compaction
▪ Combined logging

Discussion



Software Architecture: Workload Implications

Writes are amplified
▪ 1% at HDFS (w/o overheads) to 64% at disk (30GB RAM)
▪ We should optimize writes

61% of writes are for compaction

36% of writes are for logging
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Problem: Network I/O (red lines)
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Solution: Ship Computation to Data
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In Our Case, do Local Compaction

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

do compactdo compact



In Our Case, do Local Compaction
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Local Compaction

Normally 3.5TB of network I/O

Local comp: 62% reduction

Network I/O becomes disk I/O
▪ 9% overhead (30GB cache)
▪ Compaction reads are  

(a) usually misses, 
(b) pollute cache

▪ Disk I/O is much cheaper
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Related Work: Salus

Wang et al. built Salus, an implementation of the HBase 
interface that replicates DB compute as well as storage
▪ Side effect: compaction work is replicated, so Salus does 

local compaction

Finding: “Salus often outperforms HBase, especially 
when disk bandwidth is plentiful compared to network 
bandwidth.”
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Typical HDFS Worker Receives Logs from 3
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Disks

Problem: Extra Seeks for Logging
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Disks

Solution: Combine Logs (New HDFS API)
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Combined Logging

Log writes 6x faster (15 disks)

Compaction 12% faster
▪ Less competition with logs

Foreground reads 3% faster

Puts do not block currently
▪ Very useful if put()’s were 
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Facebook Messages Outline

Background
Workload Analysis
▪ I/O causes
▪ File size
▪ Sequentiality

Layer Integration
▪ Local compaction
▪ Combined logging

Discussion



Conclusion 1: New Workload on an Old Stack

Original GFS paper:
▪ “high sustained bandwidth is more important than low latency”
▪ “multi-GB files are the common case”

We find files are small and reads are random
▪ 50% of files <750KB
▪ 50% of read runs <130KB

Comparison to previous findings:
▪ Chen et al. found HDFS files to be 23 GB at 90th percentile
▪ We find HDFS files to be 6.3 MB at the 90th percentile



Conclusion 2: Layering is not Free

Layering “proved to be vital for the verification and logical soundness” 
of the THE operating system ~ Dijkstra

Layering is not free
▪ Over half of network I/O for replication is unnecessary

Layers can amplify writes, multiplicatively
▪ Logging overhead (10x) with replication (3x) => 30x write amp



Outline

Motivation: Modularity in Modern Storage 

Overview: Types of Modularity 

Library Study: Apple Desktop Applications 

Layer Study: Facebook Messages 

Microservice Study: Docker Containers 

Slacker: a Lazy Docker Storage Driver 

Conclusions
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What is a Container?
Goal: provide lightweight virtualization (compared to VMs) 

Operating systems have long virtualized CPU and memory 

But many resources have not been historically virtualized: 
• file system mounts 
• network 
• host names 
• IPC queues 
• process IDs 
• user IDs 



What is a Container?
Goal: provide lightweight virtualization (compared to VMs) 

Operating systems have long virtualized CPU and memory 

But many resources have not been historically virtualized: 
• file system mounts 
• network 
• host names 
• IPC queues 
• process IDs 
• user IDs 

New namespaces are collectively called “containers” 
• lightweight, like virtual memory 
• old idea rebranded (Plan 9 OS)
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OS-Level Virtualization

Proc A Proc B

CPU RAM

scheduler
(CPU)

PT PT
namespace
(memory)



OS-Level Virtualization

Proc A Proc B

CPU RAM

PT PT

ports

map map

100 200

80 80



Implications for Microservices
Decomposing applications is an old technique. 

How fine grained should the components be?
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Implications for Microservices
Decomposing applications is an old technique. 

How fine grained should the components be?

each microservice must 
be initialized first



Implications for Microservices
Decomposing applications is an old technique. 

How fine grained should the components be?

FS

file system provisioning is 
an interesting problem
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compute memory storage



Resource Initialization

OS
container

CPU 
core page /bin/… 

/usr/…
compute memory storage
(minimal init) (zeroing) (100’s of MBs)



Theory and Practice

Theory: containers are lightweight 
• just like starting a process! 
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[1] Large-scale cluster management at Google with Borg. 
      http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory: containers are lightweight 
• just like starting a process! 

Practice: container startup is slow 
• Large-scale cluster management at Google with Borg [1] 
• 25 second median startup 
• 80% of time spent on package installation 
• contention for disk a bottleneck 
• this problem “has received and continues to receive significant attention" 

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf


Theory and Practice

[1] Large-scale cluster management at Google with Borg. 
      http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory: containers are lightweight 
• just like starting a process! 

Practice: container startup is slow 
• Large-scale cluster management at Google with Borg [1] 
• 25 second median startup 
• 80% of time spent on package installation 
• contention for disk a bottleneck 
• this problem “has received and continues to receive significant attention" 

Startup time matters 
• flash crowds 
• load balance 
• interactive development

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf
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• Data distribution across layers 
• Access patterns



Docker Background

Deployment tool built on containers 

An application is defined by a file-system image 
• application binary 
• shared libraries 
• etc. 

Version-control model 
• extend images by committing additional files 
• deploy applications by pushing/pulling images



Containers as Repos

LAMP stack example 
• commit 1: Linux packages (e.g., Ubuntu) 
• commit 2: Apache 
• commit 3: MySQL 
• commit 4: PHP 

Docker “layer” 
• commit 
• container scratch space 

Central registries 
• Docker HUB 
• private registries



Push, Pull, Run
registry

worker workerworker
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CC C
run runrun



registry

worker workerworker

Push, Pull, Run

CC C

need a new benchmark 
to measure Docker push, 
pull, and run operations.

run runrun
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HelloBench

Goal: stress container startup 
• including push/pull 
• 57 container images from Docker HUB 
• run simple “hello world”-like task 
• wait until it’s done/ready

push pull run
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HelloBench

Goal: stress container startup 
• including push/pull 
• 57 container images from Docker HUB 
• run simple “hello world”-like task 
• wait until it’s done/ready 

Development cycle 
• distributed programming/testing 

Deployment cycle 
• flash crowds, rebalance

push pull run
ready

deployment cycle



Workload Categories
Linux Distro
alpine   
busybox             
centos              
cirros              
crux                
debian              
fedora              
mageia              
opensuse            
oraclelinux         
ubuntu              
ubuntu-
debootstrap  
ubuntu-upstart      

Database
cassandra           
crate               
elasticsearch       
mariadb             
mongo               
mysql               
percona             
postgres            
redis               
rethinkdb           

Web Framework
django              
iojs                
node                
rails              

Language
clojure             
gcc                 
golang              
haskell             
hylang              
java                
jruby               
julia               
mono                
perl                
php                 
pypy                
python              
r-base              
rakudo-star         
ruby                
thrift              

Web Server
glassfish           
httpd               
jetty               
nginx               
php-
zendserver      
tomcat      

Other
drupal              
ghost               
hello-world         
jenkins             
rabbitmq            
registry            
sonarqube                  
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How is data distributed across Docker layers? 

How much image data is needed for container startup? 
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How much image data is needed for container startup? 



HelloBench images 
• circle: commit 
• red: image



Image Data Depth



half of data is at depth 9+

Image Data Depth
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Analysis Questions

How is data distributed across Docker layers? 
• half of data is at depth 9+ 
• design implication: flatten layers at runtime 

How much image data is needed for container startup? 
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Container Amplification

only 6.4% of data needed during startup



Analysis Questions

How is data distributed across Docker layers? 
• half of data is at depth 9+ 
• design implication: flatten layers at runtime 

How much image data is needed for container startup? 
• 6.4% of data is needed 
• design implication: lazily fetch data 



Outline

Motivation: Modularity in Modern Storage 

Overview: Types of Modularity 

Library Study: Apple Desktop Applications 

Layer Study: Facebook Messages 

Microservice Study: Docker Containers 

Slacker: a Lazy Docker Storage Driver 

Conclusions
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AUFS Storage Driver

Uses AUFS file system (Another Union FS) 
• stores data in an underlying FS (e.g., ext4) 
• layer ⇒ directory in underlying FS 
• root FS ⇒ union of layer directories

Operations 
• push 
• pull 
• run
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Uses AUFS file system (Another Union FS) 
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Uses AUFS file system (Another Union FS) 
• stores data in an underlying FS (e.g., ext4) 
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HelloBench with AUFS

76% of deployment cycle spent on pull



AUFS Problems
Uses AUFS file system (Another Union FS) 

• stores data in an underlying FS (e.g., ext4) 
• each Docker layer is a directory in underlying FS 
• union these directories to create complete view of FS

Deployment problem: lots of copying 
• Caused by push+pull 
• Compute costs: compression 
• Network costs: transferring tar.gz files 
• Storage I/O costs: installing packages 
• Pull+run = 26 seconds 

Execution problem: coarse-grained COW 
• Iterate over directories on lookup 
• Large copies for small writes 
• more in dissertation
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images and 
containers

Slacker Driver

Goals 
• make push+pull very fast 
• create drop-in replacement; don’t change Docker framework itself 

Design 
• lazily pull image data (like Nicolae et al. do for VMs) 
• utilize COW primitives of Tintri VMstore backend (block level)
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images and 
containers

Prefetch vs. Lazy Fetch

registry

images

worker

containers

registry worker

Docker Slacker

significant copying 
• over network 
• to/from disk

centralized storage 
• easy sharing
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images

worker

containers

Docker

images and 
containers

registry worker

Slacker
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loopback
ext4

container

Prefetch vs. Lazy Fetch

Slacker
registry

NFS File

VMstore abstractions…



VMstore Abstractions

Copy-on-Write 
• VMstore provides snapshot() and clone() 

snapshot(nfs_path)
• create read-only copy of NFS file 
• return snapshot ID 

clone(snapshot_id)
• create r/w NFS file from snapshot 

Slacker Usage 
• NFS files ⇒ container storage 
• snapshots ⇒ image storage 
• clone() ⇒ provision container from image 
• snapshot() ⇒ create image from container
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Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

Note: registry is only a name server. 
Maps layer metadata ⇒ snapshot ID
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Indirection Discussion
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File namespace level  
• flatten layers 
• if B is child of A, then “copy” A to B to start.  Don’t make B empty 

Block level 
• do COW+dedup beneath NFS files, inside VMstore



Indirection Discussion

File namespace level  
• flatten layers 
• if B is child of A, then “copy” A to B to start.  Don’t make B empty 

Block level 
• do COW+dedup beneath NFS files, inside VMstore

ext4
A B C D

copy-on-write ext4
A AB ABC ABCD

copy-on-write

ext4 ext4 ext4

AUFS Slacker

namespace

block
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Strategy: lazy cloning.  Don’t clone non-top 
layers until Docker tries to mount them.

Assumed Layout Actual Layout
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AUFS Storage Driver Background 

Slacker Design 

Evaluation
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HelloBench Performance

deployment: pull+run 
development: push+pull+run
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Server Benchmarks

Databases and web servers 
• PostgreSQL 
• Redis 
• Apache web server (static) 
• io.js Javascript server (dynamic) 

Experiment 
• measure throughput (after startup) 
• run 5 minutes 

Result: Slacker is always at least as fast as AUFS



Questions

What are deployment and development speedups? 
• 5x and 20x faster respectively (median speedup) 

How is long-term performance? 
• there is no long-term penalty for being lazy 



Slacker Conclusion

Containers are inherently lightweight 
• but existing frameworks are not 

COW between workers is necessary for fast startup 
• use shared storage 
• utilize VMstore snapshot and clone 

Slacker driver 
• 5x deployment speedup 
• 20x development speedup 



Outline

Motivation: Modularity in Modern Storage 

Overview: Types of Modularity 

Library Study: Apple Desktop Applications 

Layer Study: Facebook Messages 

Microservice Study: Docker Containers 

Slacker: a Lazy Docker Storage Driver 

Conclusions



Modularity Often Causes Unnecessary I/O

Measurement exposed undesirable emergent properties 

Libraries cause iBench applications to excessively flush 

Layers cause Facebook Messages to waste network I/O 

Microservice provisioning unnecessary copying



Layers Mask Costs

Apple desktop 
• Key/value layer causes excessive fsync/rename 
• SQLite use caused excessive fine-grained locking, rendered 

unnecessary by higher-level exclusion

Facebook Messages 
• composition of layers amplifies writes from 1% to 64% of total I/O

Docker containers 
• AUFS access surprisingly expensive to deep data



Simple Integration Surprisingly Useful

Measurement-driven optimizations are surprisingly 
effective at mitigating the cost of modularity 

Local compaction 
• reduces network I/O by 2.7x

Combined logging 
• reduces log latency by 6x

Lazy propagation 
• reduces container startup latency by 5x 



Thank you!


