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ABSTRACT
In modern systems, developers are often unable to modify
the underlying operating system. To build services in such
an environment, we advocate the use of gray-box techniques.
When treating the operating system as a gray-box, one recog-
nizes that not changing the OS restricts, but does not com-
pletely obviate, both the information one can acquire about
the internal state of the OS and the control one can impose
on the OS. In this paper, we develop and investigate three
gray-box Information and Control Layers (ICLs) for deter-
mining the contents of the file-cache, controlling the layout of
files across local disk, and limiting process execution based on
available memory. A gray-box ICL sits between a client and
the OS and uses a combination of algorithmic knowledge,
observations, and inferences to garner information about or
control the behavior of a gray-box system. We summarize a
set of techniques that are helpful in building gray-box ICLs
and have begun to organize a “gray toolbox” to ease the con-
struction of ICLs. Through our case studies, we demonstrate
the utility of gray-box techniques, by implementing three use-
ful “OS-like” services without the modification of a single
line of OS source code.

1. INTRODUCTION
Modern operating systems are large, complex bodies of

code, in which hundreds of programmer-years have been in-
vested. As a result, modifying an operating system is a dif-
ficult, costly, and often impractical endeavor. In an extreme
but perhaps realistic view, some researchers have noted that
traditional operating systems are so rigid that to most the
OS is simply “hardware masquerading as software” [14].

Viewing the operating system as an immutable object is
clearly at odds with the bulk of operating systems research,
which seeks to develop and integrate new ideas into operat-
ing systems themselves. Thus, to reduce the efforts required
to change the OS, a large body of research has investigated
how the operating system should be restructured so that it
is extensible [8, 13, 15, 35]. In these systems, new functional-
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ity or performance improvements can easily be added, often
tailored to the desires of particular applications. However,
the limitation of these approaches is that they too require
changes to the operating system; even those efforts that try
to minimize OS modifications require that the OS be altered
in at least some minor way [17, 22].

Unfortunately, requiring a change to even a single line of
OS code can make the deployment of an innovation much
less likely. For commercial operating systems, the prob-
lem is an obvious one, as many non-technical hurdles must
be overcome to persuade a large company to incorporate
a new idea. Even if accepted by a single vendor (or into
an open-source base), without wide-spread adoption, inno-
vations are likely to go unused, since applications that run
cross-platform must use the existing interfaces on other sys-
tems. For example, consider a transactional database that
manages raw disk to obtain high performance; even if one OS
implements an optimized “database-oriented” file system,
there is little incentive to use that file system on the sin-
gle platform, since doing so complicates the database source
code. Thus, only the rare idea gets incorporated widely, and
a large range of good ideas are orphaned.

Thus, we believe that a remaining challenge is how to dis-
seminate OS research ideas without requiring any changes
to the underlying OS. Some projects, particularly in dis-
tributed computing, have addressed building system services
on top of unmodified, commodity operating systems [18, 26];
however, this approach may appear to be constricting as it
seemingly stifles the implementation of new functionality.

The thesis of this paper is that a surprisingly large class of
“OS-like” services can be provided to applications without
any modification to the OS itself. Specifically, it is often
possible to acquire information about the state of the OS
and to control its behavior in unexpectedly powerful ways,
even when no explicit interfaces to do so exist. With this
approach, the OS is treated as a gray box, in which the
general characteristics of the algorithms employed by the
OS are known. By combining this knowledge with run-time
observations of how the OS reacts to various commands and
queries, many new services can be implemented.

We term a software layer that provides interfaces to gather
information about and to control a gray-box system a gray-
box Information and Control Layer (a gray-box ICL). An
ICL, residing between clients (e.g., applications) and a gray-
box system (e.g., the OS), presents clients with traditional or
enhanced interfaces. The interfaces in the ICL allow clients
to learn about the state of the underlying system (e.g., what
data is in the file cache?), and to control its behavior (e.g.,



place these files near one another on disk). Internally, to
obtain information, the ICL may observe the existing client
interactions with the gray-box system or it may itself insert
probes into the system; in either case, combining these ob-
servations with statistical analyses and a priori knowledge of
how the OS behaves may allow the ICL to infer the current
state of the OS.

Experienced programmers tend to exploit their knowl-
edge of the behavior of the underlying system; we believe
that this knowledge should be encapsulated in ICLs, so that
these techniques can be used by all programmers. However,
gray-box systems go one step further by combining knowl-
edge with measurements and observations, a technique com-
monly found in microbenchmarks [3, 33, 39, 40, 42]. We
believe there exists a strong duality between microbench-
marks and gray-box techniques. First, ICLs often require
that underlying components be benchmarked to configure
internal thresholds and parameters. Second, understanding
the behavior of ICLs requires understanding the behavior of
the OS; thus, ICLs often reveal surprising behavior in the
OS, much as a microbenchmark might also do.

In this paper, we explore the challenges of building gray-
box ICLs by developing and studying three services. The
first is a file-cache content detector (FCCD), which deter-
mines the contents of the OS file cache and thus allows appli-
cations to re-order file operations to first access data already
in cache; this service provides functionality similar to that
proposed in [28], but with no modifications of the OS. The
second is a file layout detector and controller (FLDC), which
discerns and controls the layout of file blocks on disk, and
thus allows applications to better schedule file accesses to
reduce seek time. Third is a memory-based admission con-
troller (MAC), which detects the amount of available mem-
ory in a multi-programmed system and limits the number
of contending processes. In most cases, we anticipate modi-
fying applications to use the new interfaces provided by the
ICLs; however, since this is not always possible, we also show
that in some cases, unmodified applications can still use our
ICLs and obtain most of the benefits.

We demonstrate the utility of all three ICLs via simple
benchmarks and in real applications. In all cases, we ob-
serve substantial performance improvements relative to the
versions of the applications that have no information or con-
trol over the underlying OS; in some cases, we improve per-
formance by an order of magnitude. Of course, there are
limitations to our gray-box approach, which we discuss.

The fundamental advantage of building services within
an ICL – as a library in our examples or as middleware in
a distributed environment – is that a new service is much
more likely to receive wide-spread adoption. Related to this
is another advantage of our approach: ICLs are often easy
to port. We demonstrate the relative ease of ICL porting by
running our codes on three different Unix platforms: Linux
2.2, NetBSD 1.5, and Solaris 7.

In our implementations, we found an overlapping set of
required functionality across the gray-box ICLs. Thus, we
have begun to formalize a “gray toolbox”: a common repos-
itory of useful routines to ease construction across different
operating systems. Particularly useful are fast platform-
specific timers and statistical routines. We envision that
this toolbox will grow as more ICLs are developed, similar
in spirit to the interposition toolkit of Jones [22].

The rest of this paper is organized as follows. We be-

gin by summarizing the useful techniques for building ICLs
in Section 2. We discuss previous gray-box systems in Sec-
tion 3. In Section 4, we give an overview of our experimental
environment, and cover each of the three ICL case studies:
the file-cache content detector, the file layout detector and
controller, and the memory-based admission controller. We
describe the beginnings of a gray toolbox in Section 5, cover
related work in Section 6, and conclude in Section 7.

2. GRAY-BOX TECHNIQUES
Encapsulation helps to simplify the design of large and

complex systems, by allowing system designers to ignore
unnecessary details [25]. However, this simplification can
come at a high cost. Viewing the OS as a black box, one
can make no assumptions about the implementation, be-
havior, or internal state of the OS beyond that specified by
its interface. Thus, the only way internal-state information
can be acquired and the only way that OS behavior can be
controlled is through explicit mechanisms designed by the
implementors. If a particular interface is not provided, then
information may be hidden and control prevented.

In practice, few systems are truly black boxes, as savvy
programmers often have some idea of how a component of
the OS has been implemented. The OS is a gray box if users
have some knowledge of how it acts behind the specified
interface. We believe that this knowledge is the toe-hold for
gaining more information about the state of the OS as well as
the key to controlling its behavior. Note that although the
focus of this paper is the treatment of the operating system
as a gray box, any component, layer, module, or object-
based system can be treated as such. In this section, we
discuss the techniques we found useful when developing our
three case studies as well as those used in existing systems.

2.1 Information Techniques
The more information one has about the internal state

of the OS, the more one can optimize system services and
applications. For example, in Scheduler Activations, one
key piece of state information passed from the kernel to the
user-level scheduling library is the number of processors on
which the application is running [2]; with this information,
a threads library can do a better job of scheduling amongst
the currently active threads. Thus, we summarize ways in
which one can determine the internal state of the OS when
no such interface exists.

Acquire algorithmic knowledge. Developers interfac-
ing with the OS often have knowledge of the algorithms em-
ployed within the OS. For example, a developer may have
access to source code or to internal design documentation,
or simply may have familiarity with common implementa-
tion techniques that are likely to be used (e.g., LRU-like
caching). Algorithmic knowledge exists at many levels of de-
tail; for example, at one extreme, a designer may only know
that caching is performed within the file system, whereas at
the other extreme, the designer not only has full understand-
ing of the source code, but also knows the cost of hitting or
missing the cache.

By using algorithmic knowledge of the OS, a gray-box
ICL may be able to interact with the OS in a more efficient
manner. Determining how to interact with a component
given only general knowledge of how it behaves has been
studied extensively in theoretical work such as game theory
and decision theory [9, 41]. On the practical side, there



exists a tension between the optimizations one makes in an
ICL and its portability: the more algorithmic knowledge
that is assumed, the more optimizations one can make, but
the fewer systems to which those assumptions may apply.

Monitor outputs. Given only algorithmic knowledge,
an ICL can infer little about the internal state of the OS.
To improve the quality of inferences an ICL can make, we
have found that it is useful to combine this knowledge with
observations of the output from the OS. The observed out-
put can be either specified by the interface or be some mea-
surable characteristic external to the interface, known as a
covert channel [24]. Some examples of covert channels used
in gray-box systems include elapsed time [4], power con-
sumed [23], and the presence of dropped messages [20].

Although the outputs of a black-box OS can be observed
and used to make predictions, one cannot infer why the OS
behaves as it does; that is, one cannot infer its internal state.
The powerful aspect of gray-box techniques is the combina-
tion of observations with algorithmic knowledge, allowing
designers to build ICLs that are both portable and efficient.
They are portable because they assume only high-level al-
gorithmic knowledge; they are efficient because they can be
tuned to the specific platform by using observations to infer
the current state. Thus, even if their algorithmic knowledge
is simplistic or inaccurate, ICLs built in this way are robust,
since their observations verify the true state.

We note that an ICL may also observe inputs to the OS,
which may allow it to infer the state of the OS through mod-
els or simulations. The drawback is that this requires the
participation of all processes. Therefore, we only investigate
ICLs that do not assume the visibility of all inputs.

Use statistical methods. To infer internal state, the
ICL must be able to observe an output that is correlated
with the state of interest. For example, to infer that a spe-
cific code path has been executed or that a particular data
item is cached, one may need to observe that a response is
“fast” or “slow”. To draw robust inferences from potentially
noisy data, we advocate the use of statistical methods.

Use microbenchmarks to parameterize the system.
Some ICLs will need to know various system parameters in
order to operate properly, e.g., the speed of sequential disk
access. For this, we believe that a suite of microbenchmarks
should be available to ICLs. Care must be taken in executing
these benchmarks, as they likely require a dedicated system
and may take some time to run.

Insert probes. In those cases where the client of the ICL
does not make sufficient requests of the OS for the ICL to
observe the necessary outputs, the ICL can insert probes, or
specific requests to the OS generated solely to observe the re-
sulting output. With a probe, the ICL can generate requests
with the desired inputs, at the desired time, and in the de-
sired context. One challenge in using probes, as we describe
in our case studies, is that their presence can change the
state of the system; we refer to this as the Heisenberg effect.
A second challenge is that probes can add significant over-
head to the system; however, in some cases, adding probes
to the ICL can improve later application performance (e.g.,
by prefetching disk blocks).

2.2 Control Techniques
The second responsibility of an ICL is to control the OS

in ways not specified by its existing interfaces. Again, we
assume that the designer of the ICL has some level of OS

algorithmic knowledge. For control, algorithmic knowledge
can be used to perform actions that are known side-effects
of other operations; for example, given the read interface on
AFS [19], an ICL can read just a single byte to prefetch an
entire file from the server. We now describe other techniques
that are useful for exerting control over the OS.

Move system to known state. Inferring information
about the OS when it is in an arbitrary and unknown state
is more difficult than when the OS is in some known state.
Therefore, a useful control technique within ICLs is to move
the system to a known, simpler state whenever possible. For
example, it may be easier to gauge the contents of the OS
page cache if one periodically flushes it, and then monitors
and models the subsequent activity.

Reinforce behavior via feedback. When an applica-
tion uses an ICL, its interactions with the OS are strongly
determined by the behavior of the ICL itself. Thus, the ICL
can reinforce desired behavior by controlling the manner in
which it behaves. For example, given that the contents of
the file cache are determined by the order of file accesses,
an ICL may be able to direct client interactions to make the
cache contents more predictable. Repeated access through
the ICL (either in different runs or by different applications)
should act as positive feedback, stabilizing system behavior.

3. PREVIOUS GRAY-BOX APPROACHES
To illustrate these techniques, we briefly survey the lit-

erature of other systems that assume or exploit gray-box
knowledge. We first examine microbenchmarks, which of-
ten assume some knowledge of the system under test. We
then examine three existing systems that have used gray-box
techniques: TCP congestion control, implicit coscheduling,
and MS Manners. We note that all three services were de-
veloped because the implementors could not or did not want
to modify an existing part of the system (such as the OS).

Microbenchmarks: Applications can often obtain bet-
ter performance if they know detailed characteristics of the
underlying hardware. Since most systems do not contain
the necessary interfaces, many microbenchmarks have been
developed that exploit gray-box knowledge to allow the user
to infer these characteristics. For example, by measuring the
completion time of memory accesses with different patterns,
one can determine many parameters of the memory hierar-
chy [3, 33]; by finding the greatest common divisor of the
execution time of different expressions, one can determine
processor cycle time [39]; by measuring the access time of
carefully designed requests, low-level characteristics of disk
geometry can be inferred [40, 42].

Although gray-box ICLs bear similarity to microbench-
marks, they differ in a number of important ways: mi-
crobenchmarks only acquire information and do not control
the system; microbenchmarks gather only static informa-
tion of component characteristics, not their current state;
microbenchmarks are usually only run in a controlled envi-
ronment; and microbenchmarks are able to take an arbitrar-
ily long time to run and make their inferences.

TCP Congestion Control: The goal of the TCP con-
gestion control algorithm is for distributed clients to send
data in amounts such that they will not cause congestion [20].
By viewing the network as a gray-box, clients combine gen-
eral knowledge of how the network behaves with measure-
ments of ongoing communication to infer the current state of
the network (i.e., congestion). Given the knowledge that the



TCP Implicit Coscheduling MS Manners
Knowledge Message dropped if congestion Dest. scheduled to send msg Symmetric performance impact
Outputs Time before ACK arrives Arrival of requests and Reported progress of process

Time for response
Statistics Mean and variance None Linear regression, Exponential avg,

Paired-sample sign test
Benchmarks None Round-trip time None
Probes None None None
Known state None Required for benchmarks None, but slow convergence
Feedback Routers drop msgs as a signal All react to same observations None

Table 1: Summary of Gray-Box Techniques used in Existing Systems.

network drops packets when there is congestion, clients can
observe whether existing communication is being acknowl-
edged to infer whether congestion exists. Routers in the net-
work can then, in turn, control the sending rate of the clients
by dropping packets before congestion occurs [16]. Misbe-
having clients can also be identified by observing which are
unresponsive to such gray-box control.

Although the TCP congestion control algorithm has been
labeled a “black-box scheme” [21], we believe that due to
its assumption that packet loss is caused by congestion, it
is actually a gray-box scheme. In fact, not recognizing that
gray-box knowledge is being used has led to problems in
new environments: in a wireless setting, a dropped message
no longer indicates congestion, but can be due simply to
the lossy medium; as a result, the unmodified TCP con-
gestion control algorithm does not behave well in wireless
settings [7]. By correctly identifying when gray-box knowl-
edge is used, we believe that such problems can be avoided.

Implicit Coscheduling: For time-shared, fine-grain par-
allel jobs to achieve acceptable performance, communicating
processes must be scheduled simultaneously [29]. Implicit
coscheduling is a technique for achieving coordinated multi-
process scheduling without modifying the OS [4]. Implicit
coscheduling combines gray-box knowledge of how commu-
nication interacts with scheduling on remote nodes with ob-
servations of on-going communication in the parallel job.
Specifically, hard-wired into the algorithm used by each pro-
cess waiting for a response is the knowledge that receiving
a message from a remote process means that the remote
process is currently scheduled (or was in the very recent
past); likewise, not receiving a prompt response to a request
means that the remote process is probably not scheduled.
Thus, to infer the scheduling state on remote nodes, each
process simply observes message arrivals and waiting time.

MS Manners: Running low-importance processes only
during idle time is a feature missing from many modern op-
erating systems. MS Manners provides this functionality by
suspending low-importance jobs when resource contention
is detected [12], and is implemented without modification
of the OS. MS Manners uses the gray-box knowledge that
one process competing with another usually degrades the
progress of the other symmetrically to its own. By com-
bining this knowledge with measurements of the progress of
the low-importance process, MS Manners can infer when a
low-importance process should be suspended. The authors
find a number of simple statistical techniques to be quite
useful, particularly when calculating the expected level of
performance in an uncontended environment; however, the
required time frame is on the order of many hours.

Summary: As summarized in Table 1, the above services
touch on a number of the gray-box techniques that we will
revisit in our case studies. First, all of the services com-
bine algorithmic knowledge with observations of the time
required for existing operations to infer the state of the sys-
tem. Second, all of the services either use statistical tech-
niques at run time or a priori benchmarking of a controlled
state. In addition to the techniques presented here, our case
studies demonstrate the utility of probing the OS.

4. CASE STUDIES
In this section, we explore three ICLs. Specifically, we

develop and experiment with the file-cache content detec-
tor (FCCD), the file layout detector and controller (FLDC),
and the memory-based admission controller (MAC). Due
to space limitations, we describe FCCD in detail, but only
present a subset of the issues for FLDC and MAC. In each
section, we discuss the basic problem the ICL addresses and
the gray-box knowledge it has, explain the implementation,
perform experiments to show the capabilities of the layer,
and discuss limitations. A summary of gray-box techniques
we found useful is shown in Table 2.

All experiments are run upon a machine with two In-
tel Pentium-III processors, 896 MB of physical memory,
and five IBM 9LZX disks. Using a machine with a large
amount of memory stresses how well our ICLs can deter-
mine the contents of the file cache and the amount of avail-
able memory. Most experiments are performed on top of
Linux 2.2.17, though we also evaluate our gray-box libraries
on NetBSD 1.5 and Solaris 7. The fact that we can easily
deploy ICLs across all of these platforms illustrates one of
the major advantages of gray-box approaches.

4.1 File-Cache Contents
With knowledge of the contents of the file cache, many ap-

plications can re-order data accesses to potentially improve
their performance. For example, consider an application
that repeatedly accesses a set of files, perhaps with different
arguments (e.g., grep <arg> *), on a system where the to-
tal amount of file data just exceeds the size of the file cache
and the operating system performs LRU-like replacement.
In this case, performance improves dramatically if the ap-
plication first processes the data in the cache, because then
only a small fraction of the data needs to be fetched from
disk. If the application does not access the cached data first,
then it operates in LRU worst-case mode, fetching all data
from disk on every run [36].

This section describes a gray-box File-Cache Content De-



File-Cache Content File Layout Detector Memory-based Admission
Detector (FCCD) and Controller (FLDC) Controller (MAC)

Knowledge LRU-Replacement Groups by directory Any replacement algorithm
Reference locality in app Groups i-nodes vs. data-blocks

Outputs Time to read one byte i-number Time to write one byte
Statistics Sort and Cluster Sort Discard outliers
Benchmarks Measure seek overhead None Memory vs. disk threshold
Probes Read one byte every 5 MB stat() for i-number Write byte to each page
Known state None Refresh directory contents Write first to make resident
Feedback Order determines access pattern None None

Table 2: Summary of Gray-Box Techniques used in Case Studies.

tector (FCCD) that allows applications to gauge the con-
tents of the file cache and then act accordingly. Our pursuit
of a gray-box FCCD is inspired by recent work on Storage
Latency Estimation Descriptors (SLEDs), as discussed by
Van Meter and Gao [28]. In their work, Van Meter and Gao
propose a new interface that returns predicted access times
to sections of a file. This interface can be used to determine
which parts of a file are likely to be “fast” to access, based
on a combination of knowledge of where the file is in the
storage hierarchy and static estimates of storage device la-
tencies. The main limitation of their work is that it requires
modifications to the Linux kernel to gather the necessary
information.1 We will show below that a great deal of the
utility of their proposed system can be obtained without any
modification to the operating system.

4.1.1 Gray-Box Knowledge
We begin by exploring our algorithmic knowledge of the

file-cache manager and how that knowledge can be used to
develop a gray-box FCCD. At one extreme, we consider an
approach that has complete algorithmic knowledge of the
file-cache manager as well as access to all of its inputs. At
the other extreme, we consider an approach that uses only
basic algorithmic knowledge combined with observations of
some of the outputs.

Given complete knowledge of the behavior of the file-cache
page-replacement algorithm as well as the ability to observe
its every input, we could model or simulate which pages are
in cache. However, this approach is likely to be both com-
plex and inaccurate. First, we are likely to need a detailed
model of the page-replacement algorithm in order to cor-
rectly simulate the contents of the cache. Second, due to
interactions between the file and memory pages, we need
to observe not only all file accesses, but also all memory
accesses. Finally, all applications, not just those interested
in the state of the file-cache, must provide inputs to the
simulation; if a single process does not obey the rules, our
knowledge of what has been accessed is incomplete and our
simulation will be inaccurate.

Therefore, we instead explore how we can infer the in-
ternal state of the file-cache by observing just some of its
outputs. We begin by assuming only the coarsest level of al-
gorithmic knowledge: when the buffer cache for files is full,
some page must be replaced in order to fit a new page. Our
hypothesis is that we can predict the presence of a file (or

1Some systems provide information as to the contents of the
file cache via the mincore routine. However, this interface
is not broadly available and thus cannot be relied upon.

part of a file) within the file cache by timing a few carefully
selected file-cache probes, where a probe is a read() of a sin-
gle byte of a page within a file. If the read returns “quickly”,
we can conclude that the probed page was in cache; if the
probe returns “slowly”, then the page was on disk.

We must use probes sparingly for two reasons. First, prob-
ing a page that is not in memory has a high cost: the time
to probe the page is essentially identical to having the appli-
cation access that page from disk. Second, probing a page
on disk is destructive and changes the state of the file cache
(i.e., the Heisenberg effect): when we probe a page, the en-
tire page is brought into the file cache and another page
may be evicted. Therefore, we must be selective in our use
of probes both to keep their relative cost low and to avoid
changing the state of the system. However, our probes must
also accurately reflect the state of the file cache. Given that
these two goals are inherently at odds, in order for probes to
be successful, the presence of one page in the file cache must
be highly correlated with the presence of the pages nearby.

In order for this correlation to exist, the system must tend
to keep adjacent pages from the file either all in cache or
evict them all together. This effect occurs in most systems,
given that many applications access files with spatial local-
ity [6] and page replacement algorithms are designed with
this in mind. Thus, any operating system using an approxi-
mation of LRU, such as the clock algorithm [5], will tend to
evict pages of a file in significantly long chunks.

In Figure 1, we demonstrate this relationship by plot-
ting the correlation between the presence of a random page
in a prediction unit (i.e., a contiguous region of the file)
and the percentage of the unit within the cache. Each line
designates a different access unit used by the application:
1 MB (nearly random-access), 10 MB, and 100 MB (nearly
sequential-access); the access unit is the amount of data that
the application reads sequentially after randomly picking an
offset in the file. Each test is run as follows: we flush the
file cache, run a program that accesses a 2 GB file with the
specified access unit, and then query the file cache to deter-
mine its contents. To query the contents of the file cache, we
modified the Linux kernel to return a bit-map of presence
bits per page of the file.2

From the graph, we can see that when the prediction unit
is less than or equal to the access size, the presence of the
probed page is highly correlated with the presence of the
entire prediction unit. If the prediction unit is too large
relative to the access unit of the application, then the cor-

2Indeed, if this interface existed across all platforms, we
would not require a gray-box FCCD!
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Figure 1: Probe Correlation. The graph plots the cor-
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30 times, with both means and standard deviations shown.

relation falls off noticeably. In our implementation section,
we discuss how with use of the FCCD, the prediction unit
can be made smaller than the access unit, as desired.

4.1.2 Implementation Details
We envision the following as a common usage template

for applications that use the FCCD. First, the application
specifies the file or set of files it is interested in reading.
Second, the library returns a list of (offset,length) pairs
for the data it thinks is in the file cache, based on the probes
it performs. Third, the application uses that information
to re-order its accesses, likely first accessing the pages of
each file that are in memory before those that are not. In
the applications we have examined, these modifications have
been straight-forward and have involved few lines of code.

We also provide a method for an application to use FCCD
without requiring modification. When users call the util-
ity gbp on a set of files, it returns the list of files in the
predicted best access order, implying grep foo * can be
replaced with grep foo ‘gbp -mem *‘. To utilize data re-
ordering within a single file, we have an option to gbp that
causes it to probe the file, and then read data blocks in the
best probe order, copying what it reads to stdout. Thus,
gbp -mem -out infile | app - allows an unmodified ap-
plication that reads from stdin to utilize intra-file re-ordering.

We now describe how we can make inferences from probes
within a working library in a simple, efficient, and portable
manner. Our goal is for the same library to work well upon
any operating system that performs replacement in a similar
way (i.e., based on time of last access), and on any underly-
ing hardware (i.e., regardless of technology parameters such
as the speed of memory or disks). Our implementation must
address three problems: how to differentiate between probe
times that are in cache and out of cache, the amount of

data the application should access as a unit, and the num-
ber of pages whose state is predicted from a single probe.
We describe the issues associated with each in turn.

Cache-differentiation threshold: Conceptually, to
determine if a probed page is in memory or not, we need to
differentiate between the time for a buffer-cache hit versus a
buffer-cache miss. One approach is to have a simple thresh-
old: if the time for a probe is less than this threshold, the
page is considered in cache; if it is greater, the page is consid-
ered on disk. Given that we would like our library to work
well on a variety of platforms, such an approach requires
a priori benchmarking of kernel-to-user memory copy time
and the storage subsystem (which is particularly painful if
there are different types of disks present).

However, we arrived upon a solution that requires no dif-
ferentiation threshold: sorting the prediction units by the
time required for each probe. This method is simple, ro-
bust, and differentiates entities from a multiple-level store
(e.g., memory, disk, and tape) – in such a case, the “closest”
items are accessed first, then the next closest, and so forth.

Access unit: Using our gray-box interface to order file
accesses, an application that previously read a large file in
sequential order may now read the file in nearly random
order. To amortize the seek overhead of reading from arbi-
trary offsets within a file, the library should return (offset,
length) pairs with large length fields. We currently deter-
mine a default access unit that delivers near-peak perfor-
mance from the disk by performing a simple microbench-
mark; on our platform, we have found that a default access
unit of 20 MB works well. However, the application must
be able to specify that access units obey certain boundaries,
for example to ensure that records in a file do not cross mul-
tiple access units. More advanced applications can specify
the exact manner in which they want the data returned, by
passing in a list of (offset,length) pairs.

Prediction unit: We have already shown that picking
a prediction unit that is smaller than the access unit of the
application is sufficient for high prediction accuracy. Simi-
larly, the FCCD knows that a likely access size is the access
unit itself; thus, we can simply set the prediction unit to the
access unit and obtain a reasonable predictor. However, we
have found that performing a few probes within each access
unit is slightly more robust, and therefore currently use a
prediction unit of 5 MB. Thus, our gray-box layer probes
four points within each default access unit, measures the
time of each probe, and sorts the access units by the total
time for its four probes. The overhead of the probes is neg-
ligible; measurements reveal probe time for in-cache data in
the realm of a few microseconds, and a few milliseconds per
probe for out-of-cache data, which will likely be amortized
by the entire file access time. Files smaller than 5 MB in
size are probed exactly once.

We have also found that the method for choosing a probe
point within a prediction unit is important. One approach is
to select bytes at predetermined offsets; however, if a process
terminates after the probe phase but before the access phase,
or if two processes probe the file-cache for the same file at
nearly the same time, then the second set of probes will
return bad information, indicating that all pages are likely in
the file cache. Our solution is to probe a random byte within
the prediction unit. This method is robust across runs and
has the added benefit that an application can probe the file
cache repeatedly for increased confidence.
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Figure 2: Single-File Scan. The graph plots the total

access time for a file over repeated runs (a “warm” cache)

for both a traditional linear scan and a gray-box scan. The

gray-box scan uses the FCCD to ascertain which parts of the

file are in cache, and then accesses those before accessing the

rest of the file. Each data point is the average of 30 runs,

and includes standard deviation bars. Two simple models

are plotted as well: the predicted worst-case time, where all

data is retrieved from disk, and the predicted ideal, where

any data in the file cache is retrieved at memory-copy rates,

and all other data is fetched from the disk.

4.1.3 Experiments
We now perform experiments to demonstrate the utility

and efficacy of our gray-box FCCD. We begin by showing
that our software obtains good performance when reordering
accesses from within a single large file and when reordering
accesses across several files. We then examine the benefits
to two applications modified to use our interfaces: fastsort
and grep. Finally, we demonstrate that our techniques work
well across three different Unix-based operating systems.

Single-File Scan: First, we perform a simple experi-
ment where we modify a scan of a single file to utilize our
library. The gray-box scan uses the library to probe the
state of the file cache, and then accesses first the pages of
the file that the library predicts are in-cache and then the
rest of the file. As a result, the file access pattern within
the gray-box scan is no longer purely sequential; instead,
this scan sequentially accesses segments of the file in the
size directly determined by the access unit. The effect of
running the application multiple times is an example of the
control technique of positive feedback; by accessing the file
in access-unit sized chunks, it is likely that access-unit sized
chunks will be present in the cache.

Figure 2 plots the time taken to access a single file of
varying size, with the gray-box scan and a traditional lin-
ear scan. For each experiment, we begin by flushing the file
cache and then running the application 30 times. Note that
this graph is similar in spirit and style to the many graphs
presented within the Van Meter and Gao text [28]. From
the figure, we see that the traditional scan suffers a large
performance decrease when the size of the file exceeds the
size of the file cache. At that point, the entire file is retrieved
from disk, due to the LRU-like page replacement algorithm.
The gray-box scan is able to consistently perform much bet-
ter because it accesses disk much less frequently; the total

amount of I/O performed is proportional to the size of the
file minus the size of the file cache.

Multiple-File Scan: Some applications cannot be easily
modified to process a single file in an arbitrary order, but can
flexibly process a set of input files in an arbitrary order. In
experiments not shown here (due to lack of space), we utilize
the FCCD to determine the best ordering among a group of
files, while processing each file sequentially; performance is
very similar to that shown for the single-file scan.

Application Experiments: In our third set of exper-
iments, we incorporate the gray-box library into real ap-
plications. We first examine three versions of grep. The
first is the unmodified standard GNU utility that searches
for a string within a file or set of files. For the second ver-
sion gb-grep, we modify grep to internally reorder the files
specified on the command line using our the gray-box li-
brary. This change was straight-forward, transforming 10
lines of code into roughly 30 lines. In our third version, we
use the output of the gbp utility as input to the unmodified
grep (e.g., grep <foo> ‘gbp -mem *‘).3

Figure 3 shows the time for these three versions of grep

over 100 10-MB text files using a warm cache. The time of
each application is normalized to the time for the unmodified
version. With no gray-box knowledge, repeated runs access
the files in the same order, and thus run at the rate of the
disk. The gray-box version, gb-grep, runs about a factor of
three faster, as most file data is in the file cache. Traditional
grep combined with gbp exhibits almost all of the benefit,
although a slight additional overhead is incurred due to the
extra fork, exec, and redundant file opens and closes.

The second application is fastsort, a highly tuned two-
pass disk-to-disk sort, similar to that described by Agar-
wal [1]. The first pass creates multiple sorted runs of records,
where the size of each run is determined by how many records
can fit in memory; for each run, it reads the records from the
file, sorts the keys, and writes the sorted records to disk. In
the second pass, it reads the sorted runs from disk, merges
them into a single sorted list, and writes the final output to
disk. In these experiments, we sort roughly 1 GB of data
in 100-byte records, and only report the performance of the
first read phase. Here, to simulate a pipeline of creating
records and then sorting them, we refresh the file cache con-
tents before each run.

Once again, we consider three versions of the sort. The
unmodified sort, the sort modified to use the gray-box li-
brary, and the unmodified sort using gbp -mem -out for in-
put. The transformation of the traditional sort into a gray-
box version is slightly more involved than grep; now the
application must be willing to read parts of a single input
file in a different order. This required replacing the read
code (about 50 lines of code), and adding a probe phase be-
fore the main sorting loop (another 5 lines). Note that gbp

is informed of the 100-byte alignment restrictions of the sort
and returns chunks that are record-aligned.

Figure 3 shows the performance of the read-phase for the
three versions. Although our gray-box versions substantially
improve performance, the benefit is not as large as for grep.
This difference occurs because the sort copies into memory

3The gray-box versions of grep do not follow the exact se-
mantics of grep, because the output may be ordered differ-
ently. If semantics must be preserved, the output of grep
can be re-ordered as in [28]; however, the application may
then thrash when outputting a large number of matches.
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Figure 3: Application Performance. The performance

of grep and fastsort are shown. The leftmost bar for each

group of three shows the normalized performance of the un-

modified application on repeated runs over roughly 1 GB of

total data (grep scans through 100 10-MB files in 52.3 sec-

onds on average, and the fastsort completes its read-phase

of a 1 GB input file in 55 seconds). The second bar in each

group shows the relative improvement of the gray-box ver-

sion of the application. Finally, the third bar in each group

uses a gray-box command line tool to allow the unmodified

application to take advantage of gray-box knowledge.

every data item that it reads, and then eventually writes all
of the data to disk. Thus, there is much more contention
for memory than with a read-only application such as grep;
in particular, both the pages of the heap and the pages that
are used for write-buffering may purge parts of the input
file from memory prematurely. The unmodified sort with
gbp -out for input experiences most of the benefit, except
an extra copy of all data is required through the operating
system via the pipe mechanism; this copy is palatable in the
sort because it does not use much of the CPU during I/O,
but may not be acceptable in all situations.

Multiple-Platform Tests: To demonstrate that our
gray-box approach works well on a range of operating sys-
tems, we examine FCCD on Linux 2.2.17, NetBSD 1.5, and
Solaris 7. In our experiments, we compare the performance
of two microbenchmarks (a file scan and a multi-file search),
measuring unmodified performance on both a cold and warm
file cache and modified “gray-box” performance on a warm
cache. Figure 4 plots the relative execution times, normal-
ized on each platform to the time of a cold-cache run on that
platform (actual times are given in the caption).

Examining the scan results first, we see that on Linux,
repeated runs of the gray-box FCCD exhibit a significant
improvement relative to the unmodified scan, as expected.
However, we were slightly surprised by the performance of
repeated scans of a 1-GB file on NetBSD and Solaris. Where-
as both Linux and Solaris use almost the entire 896 MB of
physical memory for file caching, in a throwback to early
Unix implementations, NetBSD uses only a fixed amount of
memory for file caching, in this case 64 MB (note that the
recent overhaul of the NetBSD VM changes this [11]). Thus,
on NetBSD, a repeated scan of a 1-GB file runs at near-disk
rate regardless of gray-box knowledge. To illustrate best-
case gray-box performance on NetBSD, we instead report
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Figure 4: Multi-Platform Experiments. The figure

plots the performance of repeated large-file scans and multi-

file searches on each OS. Three bars are plotted per 30 runs

of an experiment: the average time for a cold-cache and

warm-cache run for the traditional approach, and the aver-

age time for a warm-cache gray-box run; each group of bars

is normalized to the cold-cache time on that OS. The Linux,

BSD, and Solaris scans were over 1 GB, 65 MB, and 1 GB

files, and took 52.3, 3.5, and 75.3 seconds in the cold-cache

case, respectively. The searches were over 100 10-MB files,

65 1-MB files, and 100 10-MB files, and took on average

53.3, 17.0, 76.9 seconds.

performance of repeated 65-MB file scans.
More surprisingly, on Solaris, repeated scans on a warm-

cache perform quite well, even without gray-box knowledge.
In this case, the file-cache manager does not use an LRU-
based replacement algorithm; instead, it keeps a single por-
tion of the file in cache, so that repeated accesses to that
file hit in the cache. However, further testing revealed that
once a file (or portion of a file) is placed in the Solaris file
cache, it is quite difficult to dislodge, even under repeated
scans of different files. Although this approach works well
for this benchmark, the Solaris cache manager holds on to
the pages of the first file accessed too persistently. We be-
lieve that this behavior may not be what the implementors
intended; further investigation is warranted.

The search benchmark demonstrates that even with non-
LRU replacement policies, there can be a benefit to gray-box
techniques. For example, when performing a search for any
match of a string in a set of files, if the match is found in
a cached file, the gray-box search will finish quite quickly,
whereas the traditional search is at the mercy of the file or-
dering specified by the user; this scenario is similar to the
grep experiment reported within [28]. Because this exper-
iment can be set up in an arbitrary manner, we configure
it such that it illustrates the maximum benefit of our gray-
box approach: the matching string is located in a cached file
which is specified last on the command-line. Figure 4 shows
that an unmodified search gets no advantage from the file
cache, since it searches through the files in order, finding
the match in the last file. The gray-box search finds the file
with the match quite quickly, because it is in cache.



4.1.4 Discussion
Investigating multiple platforms has revealed that the level

of algorithmic knowledge assumed by FCCD is largely ap-
propriate for Unix-based operating systems. By relying pri-
marily on measurements of probes, we are able to determine
the state of the file cache without requiring detailed knowl-
edge of each OS. Our study also highlights the duality of
gray-box systems and microbenchmarks themselves; both
tend to unveil the inner-workings of systems.

However, the FCCD is not a panacea. In particular, its
major limitation is that our techniques are limited by the
Heisenberg effect; for example, we cannot gauge the presence
of a small file (less than a page in size) in the cache without
bringing the entire file into the cache. Thus, the FCCD does
not currently probe such small files, and returns a “fake”
high probe-time for them. An analogous Heisenberg effect
arises in the use of a distributed file system such as AFS;
there, reading a single byte of a file would force the fetch of
the entire file into the local disk cache.

4.2 File Layout
When accessing files on disk, the exact layout of the files

has a strong effect on overall performance [38]. In this sec-
tion, we investigate how we can treat the file-system layout
algorithm as a gray-box, by developing a file layout detec-
tor and controller (FLDC). The FLDC layer allows applica-
tions to order file accesses for improved performance based
on their probable layout on disk. As discussed earlier, there
are many applications that can re-order file accesses, this
time to improve disk performance. For the purposes of this
discussion, we focus on small-file accesses; scans of large
files amortize arm-movement overheads and thus obviate the
need for re-ordering.

4.2.1 Gray-Box Knowledge
Given information about the exact layout of each inode

and file-block on disk, an application could re-order file ac-
cesses to reduce seek time, rotational delay, or both. If one
has superuser privileges and knowledge of the file-system
structures, one can reconstruct the exact layout of all files
via raw-disk reads; however, this information is usually hid-
den from users and applications.

Fortunately, experienced programmers do have gray-box
knowledge of how files are allocated on disk. Most modern
Unix file-systems are either direct or intellectual descen-
dents of the Berkeley Fast File System (FFS) [27]. FFS
attempts to lay out files such that subsequent read perfor-
mance is optimized. The basic premise is that file blocks
and the meta-data from files in the same directory are likely
to be accessed together and thus FFS tries to place them
together in the same cylinder group (i.e., a few consecutive
cylinders on the disk). Based on this algorithmic knowledge
of FFS, a simple heuristic to reduce seek time is to group
each set of files by directory name and then access them in
this order [37].

However, access order may matter within a directory as
well. We know that, for a clean file-system, when small
files are created in the same directory, it is likely that their
creation order matches their data-block layout on disk. To
determine creation order, one option is to use the creation
time of the file; however, the resolution of the creation time
is not sufficient when multiple files are created nearly si-
multaneously. Another option is to use the inode number

(i-number) of the file, which is available via a probe of the
stat() system call.

Of course, we must account for the effects of file-system
aging [37]. Rather than attempt to discover a better layout
predictor under arbitrary file creations and deletions, we
instead follow our control technique for gray-box systems
of moving the system to a known state. By “refreshing”
a directory (i.e., writing files out in a directory in a known
order), we hypothesize that the system is more likely to be in
a state where the i-number order is highly correlated with
the data-block layout. We note that when a directory is
refreshed, small files should be placed first so that the small
files are assigned the first i-nodes in the directory; large
files, whose presence tends to lower the correlation between
i-numbering and data layout, are assigned later i-nodes and
data blocks, and thus have little impact.

4.2.2 Implementation
Given this approach, the implementation of the file layout

detector and controller is straight-forward. An application
that wishes to access a set of files calls into the FLDC layer,
specifying the desired set of files; the FLDC layer then per-
forms a stat() of each file and returns the files in i-number
sorted order. Note that sorting by i-number essentially ob-
viates the need to sort by directory.

To verify the low-overhead of performing a stat() of each
file, we measured that this operation requires at most a few
milliseconds (i.e., a disk access). In fact, when accessing a
group of files within a single directory, first calling stat() on
each file and then accessing all of the file data actually im-
proves performance slightly, because inodes and data blocks
are located in separate regions of the cylinder group.

The control component of the FLDC layer to refresh a
directory requires six steps: create a temporary directory at
the same level in the file hierarchy; sort the files in the origi-
nal directory by size (or by user-specification); copy the files
from the original directory to the new one in sorted order;
update the access and modification times so as to match the
original files (so that make and other time-dependent pro-
grams operate correctly); delete the old directory; rename
the temporary directory to the old directory name.4

4.2.3 Experiments
We now explore the benefits of using FLDC on both clean

and aged file-systems. In these experiments, we examine
simple microbenchmarks and ensure that all file data and
meta-data is not in the file cache. We begin by reporting
performance in a newly created file-system across all three
operating system platforms. We examine the total time to
read many small files evenly divided into two directories for
three different access patterns: a random ordering of files,
files sorted by directory name, and files sorted by i-number.
Figure 5 shows that sorting by directory name improves per-
formance by 10-25% relative to a random order. Sorting by
i-number leads to much more dramatic improvements: a
factor of six on both Linux and NetBSD and better than a
factor of two on Solaris (we hypothesize that Solaris does
not pack the data blocks of small files together as tightly as

4There are issues of atomicity in the refresh operation, in
particular when a crash occurs after the delete but before
or in the midst of the rename. We envision a nightly script
that looks for a certain directory signature and patches up
problems, but we have not yet implemented this.
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Figure 5: File Ordering Matters. The figure plots the

total access time for a scan of 200 8-KB files, split equally

across two directories. The experiment varies both the plat-

form and the order of file access. The Random bar reflects

access time to the files in a random order for each trial,

the Sort by directory bar first groups the files by directory

and then accesses them, and finally the Sort by i-number

bar first sorts the collection of files by i-number, and then

reads them. Each of the nine bars reflect the average of 30

measurements, with standard deviations shown.

the others, and thus spends more time in rotation).
To measure the effects of file-system aging on FLDC, we

create a series of “epochs”; in each epoch, five random files
are deleted and five new files are created. In this experi-
ment, we consider 100 files, all in the same directory. We
compare the performance of an application that reads the
files in random order versus one in i-number ordering. Fig-
ure 6 plots the time for each application as a function of
increasing epochs; at epoch 31, we explicitly refresh the di-
rectory. The graph shows that random ordering performs
poorly, as expected, and that i-number ordering performs
excellently within a fresh directory and degrades over each
epoch. Though the i-number ordering is still better than
random at 30 epochs, the performance is worse than fresh
directory performance by more than a factor of three. Once
the directory is refreshed at epoch 31, i-number sorting re-
turns performance to its original level.

4.2.4 Composition
Applications can utilize the FLDC layer much in the same

way as they can utilize the FCCD layer. For example, mod-
ifying grep to process files in the order of their probable
layout on disk (or, passing ‘gbp -file *‘ on the command-
line to an unmodified grep) improves performance in a man-
ner quite similar to the speed-ups of Figure 5 (not shown due
to space constraints). However, the similarity between the
FCCD and FLDC interfaces leads to a natural question of
how to compose these ICLs.

For the best ordering of files, an application should first
access those files in cache and then access the rest according
to their i-number ordering. The difficulty in this approach
is that the FCCD does not explicitly identify which files are
in cache; it only orders files by probe time.

To reliably discern between in-cache and out-of-cache files,
we apply standard statistical clustering. In particular, the
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plots the total time to access 100 8-KB files within the same

directory on the Linux platform. The upper line plots the

time to access the files in random order, whereas the lower

line sorts the files by i-number first. Along the x-axis, the

age of the directory is increased; at every epoch, 5 random

files are deleted, and then five new files are created. After 30

epochs, the directory is refreshed by copying its contents to

a temporary directory, deleting the old directory, and then

renaming the temporary directory.

probe times of each file are clustered into two groups, min-
imizing the intragroup variance and maximizing the inter-
group variance; given that we form only two clusters, the
clustering algorithm is quite fast. The first group is pre-
dicted to be in cache and the second group is not. Since
these predictions may be incorrect (e.g., all files are actu-
ally on disk), each group is still sorted by i-number. We have
incorporated this approach into grep, and our initial exper-
iments indicate that it performs well, first accessing files in
cache, and then picking the best order for on-disk accesses.
We also provide an avenue for unmodified applications, via
a “compose” flag to the gbp utility.

4.2.5 Discussion
One limitation of the gray-box FLDC is that it is highly

Unix-centric, as it utilizes the i-number of a file. Thus, this
approach will not work on platforms that do not expose such
low-level information. Our current implementation may not
work upon non-FFS-based file systems; however, porting
may not prove difficult. For example, within LFS [32], the
ICL could take advantage of the knowledge that writes that
occur near one another in time lead to proximity in space.

Still open is the question of how often to refresh a direc-
tory. One simple heuristic is to refresh a directory randomly
every 1 in N accesses; another is to refresh certain “impor-
tant” directories in a nightly script. Ideally, one could as-
certain whether the i-number ordering is performing well,
perhaps via historical tracking; if not, perform a refresh.

One additional danger of the refresh operation is that cer-
tain applications use the i-number of files directly; if such
applications are active at the time of a refresh, they will
cease to operate correctly afterwards. Thus, truly safe re-
freshes may only be invoked during system start-up or when
the user can guarantee that no such processes are running.



4.3 Memory-based Admission Control
Virtual memory systems provide applications with the

illusion that they can use an unlimited amount of mem-
ory. However, when memory resources are heavily over-
committed, the illusion breaks down and the system must
page parts of memory or swap entire processes to disk. Thus,
we desire a service that ensures that running processes do
not actively use more memory than is physically present.

In this section, we describe our gray-box Memory-based
Admission Controller (MAC), which limits the total amount
of memory that can be allocated to that which is currently
available. This service has two components. First, for con-
trol, MAC ensures that a set of processes do not allocate
more memory than is physically present; it provides admission-
control in that processes are forced to wait until sufficient
memory is available. Second, for information, MAC noti-
fies applications of the amount of available memory so that
applications can adjust their memory usage, perhaps oper-
ating in multiple passes [30, 43]; MAC atomically identifies
and allocates this memory to avoid race conditions.

4.3.1 Gray-Box Knowledge
We investigate an approach in which each process inde-

pendently determines the amount of available memory by
probing and measuring the time for increasingly large mem-
ory accesses. This approach naturally leverages the defini-
tion of the working set employed by the page-replacement
algorithm; that is, MAC observes how much memory can be
accessed without triggering a replacement. With this tech-
nique, no special conditions are needed to account for mem-
ory used by different competing processes or for different
purposes (e.g., the heap, stack, or file cache). Although one
can directly observe paging activity in many systems (e.g.,
with vmstat), we observe only time in order to explore those
environments with very limited interfaces.

The basic algorithm employed in MAC is to probe a new
chunk of memory a page at a time in two sequential loops,
recording the time for each page access. Note that the
probes must write to each page, since copy-on-write is used
in many systems and thus reads do not force new pages to
be allocated. The first loop follows our control technique
of moving the system to a known state; we cannot directly
infer from these accesses whether or not the amount of mem-
ory fits in the available space, as access time may include
the costs of allocating, zeroing, or re-fetching the page from
disk. However, during the second loop, if access to each page
is “fast”, then MAC infers that this chunk of memory fits
in the available space, since no pages were selected for re-
placement; if the accesses are “slow”, then MAC infers this
amount of memory is too large since some of it was paged
to disk. By probing progressively larger chunks of memory,
MAC can determine the amount of available space.

The assumption of this algorithm is that the rate at which
the probes access memory approximately matches the ac-
cess rate later used in the application; that is, given a stable
working set in all competing processes, MAC and the appli-
cation are able to keep the same pages resident. However,
since the probes write to only a single byte of a page before
moving to the next page, it is very likely that the applica-
tion touches pages more slowly; as a result, the application
may not be able to keep the allocated pages resident against
an active competing process. Thus, we must make MAC
slightly less aggressive. One approach is for the application

to specify the rate at which MAC should probe pages, in
order to match the rate of subsequent access patterns, but
that approach is difficult and cumbersome at best.

Our approach is for MAC to assume that all the mem-
ory currently resident in a competing process is in its active
working set. As a result, it is not sufficient for MAC to wait
until the second access of each page to determine if paging
is occurring. If MAC notices consecutive “slow” data points
during the first access loop, it predicts that increasing its
own working set activated the page daemon and that this
size may exceed the available amount. Given these suspi-
cions, MAC immediately skips to the second loop to verify
the contents of memory.

4.3.2 Implementation
MAC provides a low-level interface, in which applications

are informed when there is not enough available memory.
Specifically, MAC exports a new interface for dynamic mem-
ory allocation, gb alloc(), which takes a minimum, maxi-
mum, and multiple of bytes to allocate, and returns a pointer
to the allocated space and the actual number of bytes allo-
cated; a NULL pointer is returned if the minimum amount
of memory is not currently available. An application which
cannot adapt its memory requirements specifies identical
minimum and maximum amounts.

By exposing control and information at this low level, pro-
cesses respond in an application-specific manner to the lack
of memory. In most cases, we anticipate that applications
will simply try to allocate memory again when a previous
invocation fails, after waiting some period of time. How-
ever, naive use of this interface may cause applications to
deadlock; for example, if two applications each allocate half
of memory and then try to allocate more memory before
releasing their initial memory, neither will ever be able to
complete. Classic solutions for deadlock prevention, such as
allocating all required memory at once or releasing mem-
ory if an allocation fails, solve this problem. In the future,
we plan to investigate higher-level interfaces that will both
hide this complexity and help provide fair allocation across
competing processes.

We now discuss two of the challenges in implementing
MAC: differentiating between in-memory and out-of-memory
probe times and incrementing the amount of the memory to
test in an iteration.

Memory-differentiation threshold: To determine if
paging from memory to disk is occurring, MAC must be
able to differentiate between the time to write to mem-
ory versus disk in a platform-independent manner. Un-
like FCCD which is able to collect all of the probe times
at once and then sort or cluster those times to differenti-
ate between groups, MAC must be able to determine on a
page-by-page basis if probing reveals the page is in memory
or not. We currently have two approaches for determining
these thresholds. The first method is to use values calculated
once through a simple microbenchmark run in a controlled
environment and advertised in a file. The second method
is used only when the microbenchmark has not been run;
the first time MAC is contacted within a process, it mea-
sures the time of repeated accesses to a few pages that are
likely to be in memory; the time for a non-resident page
is simply considered to be anything “significantly” larger.
To differentiate between paging and scheduling activity, we
have found experimentally that observing several slow data



points in near succession is a reliable indicator of paging.
Increment unit: Given that repeatedly accessing large

amounts of pages can be time-consuming, MAC should probe
a substantially larger chunk of memory on the next iteration.
However, given that recovering from too large of an incre-
ment that then causes paging is costly (both to itself and to
other processes), the increase should not be too aggressive.
We have found that a good compromise is to initially in-
crement the search size by a conservative amount, to slowly
double the increment amount as the allocated memory is
found to fit in the available space (up to a fixed maximum
increment unit), and to back off completely to the origi-
nal increment size when a problem is detected, analogous
to but more conservative than the TCP congestion-control
scheme [20].

4.3.3 Experiments
On the Linux platform, we have extensively verified that

MAC returns the expected amount of memory. For example,
our experiments show that if one process allocates x MB of
data and accesses it in a variety of patterns, then MAC
reliably returns (830 − x) MB to a competing application.
Both applications are then able to repeatedly access their
allocated memory without paging.

To show that MAC behaves well when multiple competing
processes use it simultaneously from within a demanding
application, we investigate four copies of fastsort, each
sorting 477 MB of data. The sort is able to adapt to the
amount of available memory by reading, sorting, and writing
sets of records in passes, where the size of each pass fits
in memory. Determining the number of records that fit in
memory is complicated due to the fact that Linux has a
shared virtual memory/file cache; thus, the amount devoted
to the virtual memory system changes as records are read
from and written to disk.

We investigate both the traditional fastsort, in which
the size of each pass is specified on the command-line, and
gb-fastsort, which has been modified to use the MAC ICL.
Given that gb-fastsort frees each chunk of memory before
allocating memory for the next pass, it meshes well with
our interface and cannot deadlock. We specify a minimum
allocatable amount of 100 MB to ensure that arbitrarily
small passes are not performed and a maximum equal to
the total amount to be sorted (477 MB). Given that all four
gb-fastsort processes try to allocate memory simultane-
ously, some are able to grab large chunks while others do
not acquire their minimum and must wait until memory is
freed.

Figure 7 shows that sorting is extremely sensitive to the
amount of memory allocated on each pass and that over-
estimating this amount severely increases the amount of
time required to complete the workload. Even with per-
fect knowledge of the workload, it is unlikely that a user
would be able to determine this amount correctly. Given
that 830 MB is available on the machine, one might antic-
ipate that at least 200 MB could be sorted in a pass by
each of the four processes without paging; however, passes
of 200 MB cause some paging and a significant slowdown
compared to runs of 150 MB. The robustness of our MAC
layer is illustrated by the fact that gb-fastsort never ex-
hibits paging activity in the read, sort, or write phases. In
the experiments, gb-fastsort uses an average pass size of
154 MB, very close to the best-performing static version,
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Figure 7: Performance of the Sort with MAC. We

execute the first phase of four competing copies of fastsort;

each sorts 5 million 100-byte records (477 MB). We do not

execute the merge phase, since its performance is not as

sensitive to the amount of available memory. To avoid con-

tention at the disks, each process reads and writes from its

own disk and the fifth disk is used only for paging. The file

cache is flushed between each test. The performance without

MAC degrades rapidly when too much memory is allocated:

sorting with a pass size of 290 MB (not shown) requires an

average of nearly 30 minutes. Each data point represents

the average of 30 experiments.

but performs 54% worse due to gb alloc overhead.
There are two significant and approximately equal over-

heads present within gb-fastsort (both designated as Over-
head in the graph). The first component is time spent
within the MAC layer, repeatedly probing memory; since
we increase the number of probed pages on each iteration,
this operation is proportional to the square of the number of
pages. The second component is the time spent waiting for
memory to be available. In a compute-bound workload, this
waiting time is hidden by the increased throughput of other
processes; however, in an I/O bound workload such as that
with fastsort, waiting time increases the total time for the
workload. We note that performing admission control for
this workload accounts for the improved performance of the
write phase, since there is no contention for the file cache.

4.3.4 Discussion
MAC has two important limitations. First, our imple-

mentation is very sensitive to the behavior of the underlying
page-replacement process in the OS; the parameters within
MAC are currently tuned to work well only on Linux. Sec-
ond, our interface assumes that applications call pairs of
gb alloc and gb free whenever their memory requirements
change. We do not try to inform the application when avail-
able memory changes, because we believe such call-backs are
difficult for programmers to deal with efficiently. Thus, al-
though we can effectively allocate available memory if an
application uses MAC after others have allocated memory
with malloc (or through any other approach), we cannot
prevent thrashing if a competing application subsequently
calls malloc for an amount larger than available memory.



5. TOWARDS A GRAY TOOLBOX
To support gray-box systems, we are assembling a collec-

tion of useful tools. Given that there are certain operations
that are performed frequently by gray-box layers, these com-
mon operations should be implemented and optimized only
once. Although we have implemented a number of utilities
in our current toolbox, we imagine that more will be added
over time as developers gain experience with gray-box sys-
tems. By observing systems in the literature and from our
own case studies, we believe the following tools to be useful
in building gray-box ICLs.

Microbenchmarks for Configuration: Many gray-
box ICLs require knowledge about the performance parame-
ters of underlying components to either amortize overheads
(e.g., to set the access unit in the file-cache content detector)
or to differentiate between different states (e.g., to determine
if a page is in memory or on disk). Since it is likely that
multiple ICLs will need the same parameters, we share this
information in a common repository. Thus, all of our mi-
crobenchmarks report performance numbers (e.g., expected
disk seek time, expected disk bandwidth, time for the OS to
allocate and zero a page, time to access a page in memory,
time to access a page on disk) in a common format kept in
persistent storage; each microbenchmark then only needs to
be run once, or when the performance is suspected to have
changed. Each ICL can then search this file for the desired
information; if it does not yet exist, the ICL must determine
the best way to acquire the information and whether or not
it should update the common repository.

Measuring Output: To acquire information about a
gray-box component, many of the ICLs that we have studied
measure the time that operations take to complete. Given
that the overhead of obtaining the elapsed time is now added
to many operations, it is important that this overhead be
low. Further, we often time operations that complete very
quickly; thus, timer resolution is an issue. Therefore, we
provide a fast timer that is specific to the current platform
(e.g., on Intel machines, we use the rdtsc instruction).

Interpreting Measurements: Given observations from
an output, an ICL must manipulate the raw data to infer
the current state of the OS. We have found that there are
common data manipulations that are useful; for example,
calculating simple statistics such as the mean, standard de-
viation, median, maximum, minimum; performing slightly
more sophisticated operations, such as correlations, clusters,
and discarding outliers; and finally, sorting. Once again, due
to their frequency, it is important for these operations to be
performed with low time and space overhead. Furthermore,
because the data is collected over time and the results must
be continually monitored, the operations must be performed
incrementally. Note that Douceur and Bolosky’s statistical
sampler is a good candidate for inclusion here [12].

6. OTHER RELATED WORK
Many influential research projects have investigated how

to restructure operating systems so that they are extensi-
ble [8, 13, 15, 35]; if adopted, these systems solve many of
the problems of how to incorporate new functionality into
the OS. However, given that not all commercial operating
systems will be restructured, other work has investigated
how to allow developers to add functionality to the OS or
to use the OS in new ways with minimal changes.

With interpositioning, developers write code extensions

that are invoked whenever events cross interface boundaries
(such as into or out of the OS). Implementing protected
interposition agents requires small changes to the OS [17,
22], but their presence enhances the number of gray-box
techniques that can be applied. Specifically, with interpo-
sitioning, one can more easily observe all of the OS inputs
and outputs and then model or simulate the OS to infer its
current state. In the future, we plan to investigate the use
of interpositioning with gray-box ICLs.

Disco is an example of a virtual machine monitor [10].
Rather than modify the OS to run on a multiprocessor, an
additional layer of software is inserted between the hard-
ware and multiple operating systems. Disco occasionally
uses gray-box knowledge of the OS to achieve the desired in-
formation and control; for example, Disco developers know
that IRIX 5.3 enters low-power mode when idle, and thus
use this as a signal to switch to another virtual processor.

Finally, visual proxies [34] treat applications as gray boxes
that cannot be changed. The insight is that GUI-based ap-
plications reflect much of their internal state in their visual
interface; a visual proxy can snoop on changes to the GUI
and mirror the internal state of the application. The vi-
sual proxy can also control the application by generating
synthetic window events that simulate user input.

7. CONCLUSIONS
Systems are no longer developed in isolation. When build-

ing a new local or distributed service, more than likely one
will utilize and interact with other software components
which one has little or no control over. This situation is
in contrast to the past, where not only could a small group
of researchers implement an entirely new operating system,
they could also include a compiler, shell, and other tools [31].

Gray-box techniques help in building systems and services
that live within these constraints. Gray-box ICLs encapsu-
late the knowledge that one has of the behavior of the OS,
and via observation, statistical methods, and inference, al-
low clients to gain information about the state of the OS,
and in doing so, control its behavior.

Within this paper, we have demonstrated the utility of
gray-box techniques with three “OS-like” services: a file-
cache content detector, a file layout detector and controller,
and a memory-based admission controller. Applications can
improve their performance substantially through the use of
these ICLs, sometimes without source-code modification.

We believe that gray-box techniques are broadly applica-
ble, not only to the local operating system, but also within
distributed environments; therefore, we plan to develop and
explore gray-box ICLs in other settings. Of course, not all
services can be developed with the gray-box approach: the
most revolutionary of ideas are likely to require changes in
many or all parts of a system. Thus, a remaining chal-
lenge is to determine exactly which types of services can
be implemented within a gray-box ICL, and which must be
incorporated into the operating system itself.
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