
Removing the Costs and Retaining the Benefits
of Flash-Based SSD Virtualization with FSDV

Yiying Zhang
University of California, San Diego

yiyingzhang@cs.ucsd.edu

Andrea C. Arpaci-Dusseau
University of Wisconsin-Madison

dusseau@cs.wisc.edu

Remzi H. Arpaci-Dusseau
University of Wisconsin-Madison

remzi@cs.wisc.edu

Abstract—We present the design, implementation, and
evaluation of the File System De-Virtualizer (FSDV), a
system that dynamically removes a layer of indirection
common in modern storage stacks and decreases indi-
rection space and performance costs. FSDV is a flexible,
light-weight tool that de-virtualizes data by changing file
system pointers to use device physical addresses. When
FSDV is not running, the file system and the device both
maintain their virtualization layers and perform normal
I/O operations. We implement FSDV with ext3 and an em-
ulated flash-based SSD. Our evaluation results show that
FSDV can significantly reduce indirection mapping table
space in a dynamic way while preserving the foreground
I/O performance. We also demonstrate that FSDV only
requires small changes to existing storage systems.

I. INTRODUCTION

New generations of storage devices often virtualize
their storage media to provide the conventional block
I/O interfaces and to hide their internal operations [9],
[11]. For example, flash-based SSDs maintain a map-
ping table to map host OS logical block addresses
to physical addresses in flash memory using Flash
Translation Layers (FTLs) [5], [6], [7], [10], [13], [14].

Multiple layers of virtualization can result in excess
virtualization [4], [20]. For example, running a file
system on top of a virtualized device creates two levels
of virtualization; a block is first mapped from a file
offset to its logical address and then from the logical
address to its physical address in the device.

Certain virtualization layers are sometimes unneces-
sary; moreover, they can cause performance and mem-
ory overheads. The redundant level of virtualization in
flash-based SSDs are usually maintained in DRAM,
imposing performance, monetary, and energy costs.
Such costs are of greater concern when SSD size grows
or when SSDs are deployed in mobile devices. Even
for SSDs that have enough DRAM for a big SSD
mapping table [15], a smaller mapping table could still
enable more DRAM space for performance optimization
usages, such as a read cache or a write buffer. Various
approaches [7], [13], [14] have been proposed to reduce
the SSD mapping table size, but they usually come with

a high performance cost or require fundamental changes
to storage systems [12], [18], [19].

One way to remove excess virtualization is to co-
design software and hardware layers to completely
eliminate the redundant level of virtualization. Name-
less writes [20] are one example of using new I/O
interfaces to avoid excess virtualization in flash-based
SSDs. Approaches like nameless writes remove excess
virtualization for all I/Os and do not allow user control
of when and how much virtualization is removed. Such
approaches also require fundamental changes to the
device I/O interface and are thus difficult to integrate
into existing systems [16].

In this paper, we propose de-virtualization, a differ-
ent approach to remove excess virtualization by letting
existing virtualization layers create their indirection
mappings and later removing these mappings. We can
view de-virtualization as a method to reduce existing ex-
cess virtualization, as opposed to approaches that avoid
the creation of excess virtualization. Suppose there are
two layers of virtualization. The top layer creates a
mapping A→ B (e.g., during file system allocation of
logical resource) and the bottom layer creates a mapping
B → C (e.g., during device allocation of physical
resource). A de-virtualizer collapses these mappings by
updating the top layer mapping to A → C and by
removing the bottom layer mapping B → C.

To perform de-virtualization, we introduce the File
System De-Virtualizer (FSDV), a tool that dynamically
removes the virtualization costs in virtualized storage
devices. The basic idea is simple: FSDV walks through
file system structures and changes file system pointers
from using logical addresses to using physical ad-
dresses. The device virtualization layer then removes
the logical to physical address mappings.

To dynamically de-virtualize data, we separate
blocks into different address spaces. Initially, the file
system allocates logical addresses in the traditional
way; all blocks are in the logical address space and
the device uses a mapping table to map them to the
device address space. FSDV then walks through the
file system and de-virtualizes its data. Afterward, the
de-virtualized contents are in the physical address space
and corresponding mappings in the device are removed.978-1-4673-7619-8/15/$31.00 c© 2015 IEEE

(a) Original (b) After FSDV (c) After Device Remap

Fig. 2: FSDV Address Spaces. Different states of address spaces and address mappings in a storage system with FSDV.
Device address space represents the actual physical addresses on the device. The file system sees both the logical and physical
address spaces. The physical address space and the device address space have one-to-one mapping (that is, physical address
P0 has the same value as device address P0).

Fig. 1: FSDV Architecture. The file system and the device
perform I/Os and accumulates device mappings. FSDV issues
simple commands to the file system and the device to perform
de-virtualization and reduce the device mapping table size.

The device then accumulates new mappings with new
application writes until FSDV de-virtualizes them again.

FSDV offers two benefits over previous approaches
that avoid excess virtualization.

First, FSDV can be invoked dynamically (e.g., when
the system is idle or when the system is under memory
pressure). Such dynamic de-virtualization can remove
excess virtualization both in device hardware where
there is hard limit of memory space and in host soft-
ware [8] where memory space is more elastic.

Second, by letting the virtualization mappings be
created and removed later, FSDV preserves existing file
system and device virtualization layers, requiring only
small changes to them to assist de-virtualization. When
FSDV is not running, the file system and the device
perform I/O operations in a largely unchanged manner.

We implement FSDV as a user-level tool and modify
the ext3 file system and an emulated flash-based SSD
for it. Our evaluation results show that FSDV largely re-
duces the cost of device virtualization while preserving
the foreground I/O performance. FSDV reduces device
mapping table size by 75% to 96% with only 3% to 5%
overhead in foreground I/O throughput, compared to an
SSD FTL which has optimal performance but requires
a large mapping table that does not fit in common
device DRAMs. We also find that by placing most of the
functionality in FSDV, only small changes are required
in the current storage system.

II. DESIGN OVERVIEW

FSDV largely reduces device-level mapping table
space in a dynamic way, while minimizing its perfor-
mance overhead and its impact on current I/O systems.
This section presents an overview of the FSDV system
design and how its de-virtualization process works.

FSDV is a user-level tool that runs periodically or
on demand to remove the costs of the indirection layer
in a virtualized storage device. It works with running
file systems by interacting with the file system and
the virtualized device with simple commands. Figure 1
presents the architecture of a storage system with FSDV.

Since FSDV dynamically de-virtualizes data, a block
can be in different states and have different types of
addresses. We use three address spaces to represent
different states of a block: the logical address space
where newly allocated blocks exist, the physical address
space where de-virtualized blocks sit, and the device
address space which the device uses to store blocks
physically. Figure 2 gives an example of FSDV address
spaces and mappings in different states.

When FSDV is not running, the file system and the
device perform their own I/O operations and maintain
their virtualization layers. The file system allocates data
in the logical address space. The device allocates device
addresses and maintains a mapping table from logical
to device addresses. Figure 2a represents the state of the
storage system when FSDV has not been invoked. All
file system addresses are in the logical address space,
and the logical addresses L0, L1, L2, and L3 are mapped
to the device addresses D3, D2, D4, and D0 through the
device mapping table.

When the mapping table space pressure is high
or when the system is idle, FSDV can be invoked
to perform de-virtualization to reduce mapping space.
FSDV de-virtualizes a block by changing the file system
pointer that points to it (i.e., the metadata) to use its
device address. FSDV queries the device about the
device address of a block and moves the block from
the logical address space to the physical address space.
This physical address is the same as the device address
of the block. The device then deletes the corresponding

Time (sec)

0 60 120 180

M
a
p
p
in

g
 T

a
b
le

 S
iz

e
 (

M
B

)

0

4

8

12

NoFSDV
FSDV

Initial directory and file creation

Application I/Os

FSDV invoked

Fig. 3: Mapping Table Space with and without
FSDV. The mapping table space change over time running
a FileServer workload without and with FSDV.

mapping from the logical address to the device address.
For future reads, the device checks if there is a mapping
entry for the block. If there is, the device serves the
reads after remapping. Otherwise, the device reads
directly from the device address.

Figure 2b represents the state after FSDV de-
virtualizes blocks L0 and L2 and moves them to the
physical address space. These blocks now use physical
addresses P3 and P4 which directly represent the device
addresses D3 and D4. The device mappings from L0 and
L2 to D3 and D4 are removed accordingly.

Apart from mappings created during application
writes, device operations can also create or change
address mappings. Flash-based SSDs perform garbage
collection and wear leveling operations, both involv-
ing physical-block migration. When a directly mapped
block is migrated to a new device address, the FTL
adds a new mapping from its old device address to
its current device address. FSDV also removes these
mappings created by the device. Figure 2c represents
the state after the device migrates a block from device
address D3 to D1 (e.g., during a wear leveling operation)
and adds a mapping from physical address P3 to device
address D1.

Figure 3 gives a concrete example of mapping table
space change over time. In this example, a FileServer
workload from the FileBench suite (F3 in Table I) is
used. In the initial phase, the workload allocates all
directories and files, causing the mapping table size
to increase quickly. The workload then performs I/O
operations (e.g., appends and overwrites), causing a
slow mapping table size increase. When FSDV runs, it
reduces the mapping table size significantly and is able
to keep the table size small throughout the workload.

III. THE FSDV TOOL

We implement FSDV as a user-level tool that works
with the file system and the device to perform de-
virtualization. This section describes our implementa-
tion of FSDV, two optimizations FSDV uses for better
performance, and how FSDV handles reliability issues.

Fig. 4: FSDV Processing a File Tree. The left part of
the graph (a) represents the state of a file in the file system
and the device mapping table before FSDV runs. The right
part (b) represents a state in the middle of a FSDV run. L1
and L2 have been devirtualized to D1 and D2. The indirect
block containing these pointers has also been rewritten. The
mappings from L1 to D1 and L2 to D2 in the device have
been removed as well.

A. De-Virtualization Process

FSDV de-virtualizes a file system by processing one
file at a time. For most file systems like ext2, ext3, and
ext4, a file can be viewed as a tree structure with the
inode of the file at the tree root, indirect blocks (or
extent blocks) in the middle of the tree, and data blocks
at the leaf level. FSDV de-virtualizes a file by walking
through the file tree structure and processing metadata
blocks from bottom up. Figure 4 gives an example of
FSDV processing a file tree.

For each pointer in a metadata block, FSDV sends
the address that the pointer uses (either logical or
physical address) to the device and queries its current
device address. If the device returns a device address,
then FSDV updates the pointer to this address. After
FSDV has processed all the pointers in the metadata
block, it writes the updated metadata block to the device
and informs the device to remove the corresponding
mappings. FSDV uses the bottom-up fashion, because
when FSDV processes an upper-level metadata block,
all its children have already been processed. FSDV
can update this metadata block with the final device
addresses of all its children.

We do not de-virtualize inodes, directory blocks, or
the metadata in the file system journal, since they only
account for a small part of typical file systems [3].

B. Optimization Techniques

We use two optimization techniques to reduce the
overhead of FSDV. First, FSDV does not need to process
files that have not been updated since the last run of
FSDV. To further reduce the run time of FSDV, FSDV
can choose not to process hot data, since they will
soon be overwritten after FSDV de-virtualizes them.
FSDV uses a hot file threshold, ThreshHotFile, to only
process files that are not accessed recently. For example,
if we set ThreshHotFile to be 1/10 of the time window

between two FSDV runs, the latter run will ignore the
files that are most recently updated within 1/10 of this
time window.

C. Reliability Issues

Several reliability and consistency issues can occur
during the de-virtualization process of FSDV. For exam-
ple, the FSDV tool can crash before it completes its de-
virtualization operations of a file, leaving the metadata
of the file inconsistent.

We solve the reliability-related problems using the
following techniques. First, we make sure that the
device never deletes an old metadata block until the
new version of it has been committed. When the new
metadata block is written, its old version is invalidated at
the same time. This operation is an overwrite and most
current devices already invalidate old blocks atomically
with overwrites. Second, FSDV logs the old addresses
a metadata block points to before FSDV processes
the metadata block. Doing so ensures that if FSDV
crashes after writing the new metadata but before the
device removes the old address mappings, the device
can remove these mappings on recovery. Finally, we
set a timeout in the file system to detect a dead or
unresponsive FSDV tool.

IV. DEVICE SUPPORT

This section describes the changes in the device
virtualization layer to support FSDV. We change a
flash-based SSD emulator [20] to support FSDV. The
emulator FTL uses log-structured allocation and page-
level mapping. This FTL offers better performance than
FTLs that maintain coarser-grained mappings, but it
would require huge DRAM to store its mapping table
without FSDV.

Most part of the emulated SSD and its FTL are
not changed. The FTL still performs device address
allocation for writes and maintains its mapping table.
For reads, the FTL looks up its mapping table and
either reads directly from the device address (if there is
no corresponding mapping entry) or from the mapped
device address.

We implement the FTL mapping table with a simple
hash table that chains entries that fall into the same hash
bucket. The key to the hash table is the block address
that the file system sends to the device in an I/O request,
the value in each hash table entry is the current device
address of this block.

FSDV interacts with the device FTL using simple
commands. When FSDV queries the device for the
device address of a block, the FTL looks up its mapping
and returns the mapped address or a no-mapping-found
status to FSDV. After processing and writing the new
metadata block, FSDV informs the device to remove the
corresponding mapping entries. The device also stores
FSDV operation logs for reliability issues.

One challenge specific to flash-based SSDs and
other devices that migrate physical data is that new
mappings are added for the migrated data. FSDV also
removes these mappings caused by device data migra-
tion. A simple way to handle these mappings is to scan
and de-virtualize the whole file system; these mappings
will eventually be removed in this process. However, the
performance cost of a whole-file-system scan is high,
especially for large file systems. In order for FSDV
to know what metadata points to the device-mapped
data, we associate each block to the file to which it
belongs. Specifically, we let the file system send the
inode number together with a block write. The device
records the inode number in the Out-Of-Band (OOB)
area adjacent to the flash page that the device assigns
the write. Notice that the device only needs to store the
inode number in the OOB area and not in the device
DRAM, thus it does not increase DRAM consumption.
During page migration, the FTL records the files that
contain migrated data. FSDV later queries the device
about these device-migrated files.

Overall, the changes required in the device to sup-
port FSDV are small and do not affect the major func-
tionality of the device. The interfaces between FSDV
and the device are all simple commands initiated by
FSDV. Sending inode numbers with writes is the only
change we make to the I/O interfaces, and it is only
required for devices that migrate physical data. These
interface changes are easier to adopt into current device
interfaces than previous solutions [16] that require fun-
damental interface changes (e.g., calling from the device
into the file system).

V. FILE SYSTEM SUPPORT

This section describes our file system changes to
support FSDV. Specifically, we port the ext3 file sys-
tem to FSDV. Most of the file system functionality is
unmodified. We make the following changes to ext3 to
support FSDV.

First, we add a bit to distinguish logical addresses
from physical ones and change the device size boundary
check to accommodate physical addresses.

Next, we modify the way the file system tracks
address spaces to support FSDV. Ext3 uses logical
address bitmaps to track allocated logical addresses
and a free space counter to track the total amount of
allocated addresses. Moving blocks between the logical
address space and the physical address space results in
bitmap changes, but we do not change the free space
counter. Doing so ensures that ext3 has the correct
information about the actual amount of free space on
the device.

For devices that migrate physical data, the file sys-
tem sends the inode number to the device during a write,
so that the device can let FSDV know what files include
device-migrated data.

M
a
p
in

g
 T

a
b
le

 S
iz

e
 (

M
B

)

0

2

4

6

8

F1 F2 F3 F4 F5 I1

IndirectBlock
Data
Remaining

Fig. 5: Mapping Table Space Reduction. The mapping
table space reduction of indirect blocks and data blocks.

R
u
n
 T

im
e
 (

s
e
c
)

0

1

2

3

4

5

F1 F2 F3 F4 F5 I1

IndirectBlock
Data
Other

Fig. 6: FSDV Run Time. The total run time of FSDV spent
on de-virtualizing indirect blocks, data blocks, and the rest.

Workloads Total Size Files File Size
F1 512MB 1000 512KB
F2 1GB 2000 512KB
F3 2GB 2000 1MB
F4 4GB 2000 2MB
F5 4GB 4000 1MB
I1 3.6GB 3000 1.2MB

TABLE I: Workloads Description The workload proper-
ties including the total workload size, the number of files, and
the average file size. Workloads F1 to F5 represent different
FileServer workloads from the FileBench suite. Workload I1
represents the file system image generated using Impressions.

The file system works with FSDV to guarantee data
consistency. When FSDV sends the request to process
a block, the file system flushes it from the page cache.
The file system also blocks I/Os to the block by stalling
them until FSDV finishes its processing of this block.

Finally, for FSDV performance optimizations, the
file system records the files that have changed since the
last run of FSDV and their update time.

Overall, FSDV requires only small changes to a file
system and does not affect its major functionalities.

VI. EVALUATION

This section presents our experimental evaluation
of FSDV. We implement a user-level FSDV tool and
change an emulated SSD device and the ext3 file system
to support FSDV. The total lines of code change in
the file system is 201 and is 423 in the device. We
implement the FSDV tool using the fsck code base [1].

Experimental environment: All experiments were
conducted on a 64-bit Linux 2.6.33 server that uses a
3.3GHz Intel i5-2500K processor and 16GB of RAM.
The emulated SSD used in our experiments has 5GB
total size, 10 parallel flash planes, 4KB flash pages,
and 256KB erase blocks. The flash page read and write
operations take 25 and 200 µs. The erase operation
takes 1.5 ms.

Workloads: We use the Impressions tool [2] to mimic
typical file system images. For more controlled work-
loads, we use the FileServer macro-benchmark in the
FileBench suite [17] with various numbers of directories
and average file sizes. Table I summarizes the settings
used in these workloads.

A. Mapping Table Reduction

Reducing device virtualization costs is a major goal
of FSDV. We first evaluate the mapping table space
FSDV reduces. Figure 5 presents the amount of map-
ping table space reduction with different FileServer
workloads and the Impressions file system image. We
further break down the mapping table space reduction
into the reduction due to data blocks, indirect blocks,
and the amount of remaining mappings.

Overall, FSDV reduces the device mapping table
size by 75% to 96%. As expected, most of the mapping
table reduction is with data blocks, since typical file
system images mostly consist of data blocks [3]. We
also find that larger files result in bigger data block and
indirect block mapping table reduction. The Impressions
workload has less indirect block reduction as compared
to the FileServer workloads, since it has smaller file
sizes. Finally, there is a small part of mappings that
FSDV does not remove. These remaining mappings are
for inodes blocks, directory blocks, and other global file
system metadata.

B. FSDV Performance

It is important for FSDV to have short run time and
low impact on foreground I/Os. Figure 6 shows the time
taken to run FSDV with the FileServer workloads and
the Impressions file system image.

Overall, the run time of FSDV is small (from 2 to
5 seconds for 512MB to 4GB data). We further break
down the run time into the time spent on processing
mappings of data blocks, indirect blocks, and other time
(e.g., time spent on reading block group description
blocks). Most of the FSDV time is spent on processing
data and indirect blocks. This time increases with larger
file size and larger file system size. On the other hand,
processing data and indirect blocks also contribute to
most of the mapping table size reduction.

We also evaluate the performance overhead of FSDV
on normal I/Os using the FileServer workloads. FSDV
has only a small overhead of 3% to 5% on foreground
I/O throughput. We compare FSDV to a page-mapped
FTL which has optimal performance but requires a
large mapping table that does not fit in common device

Time (sec)

0 60 120 180 240

M
a
p
p
in

g
 T

a
b
le

 S
iz

e
 (

M
B

)

0

2

4

6

8

no_FSDV
Thresh_HotFile=1/10
Thresh_HotFile=1/20
Thresh_HotFile=1/40
Thresh_HotFile=0

Fig. 7: Mapping Table Size with Different
ThreshHotF ile

N
u

m
b

e
r

o
f

P
ro

c
e

s
s
e

d
 F

ile
s

0

200

400

600

800

1000

0 1/40 1/20 1/10

R
u

n
 T

im
e

 (
s
e

c
)

0

0.2

0.4

0.6

0.8

1

1.2

Files RunTime

Fig. 8: Effect of Different ThreshHotF ile

DRAMs. When FSDV is processing a block, it blocks
foreground I/O to this block until the procecessing is
finished. We measure such blocking time to be 5ms on
average. Such blocking only happens when a foreground
I/O to a block is issued when FSDV is processing it,
and I/Os to other blocks are not blocked.

C. FSDV Optimizations

Finally, we measure how effective the FSDV opti-
mization techniques are. We run the F2 workload and
invoke the FSDV tool periodically (once a minute) to
evaluate the effect of FSDV optimization policies.

Figure 7 presents the mapping table size change
over time without FSDV and with FSDV using different
hot data thresholds (ThreshHotFile). ThreshHotFile

is set so that the files that are most recently updated
within 1/10, 1/20, and 1/40 of the time window between
two FSDV runs are not processed. ThreshHotFile 0
represents that FSDV processes all modified files. As
expected, as ThreshHotFile decreases, FSDV processes
more files and reduces more mapping table space. FSDV
with ThreshHotFile 0 reduces most mapping space.

Figure 8 shows the run time and number of pro-
cessed inode with different ThreshHotFile. A lower
ThreshHotFile results in more files processed but
longer FSDV run time.

VII. RELATED WORK

Most current flash-based SSDs use a coarser granu-
larity of address mapping for most of the flash memory
region [13], [14], or use fine granularity for all the flash
memory and cache recently used mappings in RAM [7].
These methods reduce the SSD mapping table size to
some extent at the cost of sacrificing SSD performance
(e.g., during garbage collection or when the working set
size is big). FSDV reduces more SSD mapping table
space without sacrificing foreground I/O performance.

DFS [8] is a system that moves the SSD virtual-
ization layer and the mapping tables from SSDs to a
software layer in the host memory. With this approach,
the cost of virtualization within the device is removed,
but the virtualization cost still exists in the host. FSDV

is orthogonal to this approach. It can reduce the SSD
virtualization costs whether the virtualization layer is in
the hardware or in the host software.

Another approach to reduce the virtualization costs
in SSDs is to use flash-oriented file systems [18], [19]
that manages flash directly without an SSD FTL. These
solutions sacrifice portability and flexibility, and intro-
duce performance overhead and security vulnerabilities.
For example, during garbage collection and wear level-
ing operations, data is moved back and forth between
the device and the host through I/O buses that are slower
than SSD-internal buses. Moreover, a bug or a security
breach in the file system could potentially wear out an
SSD fast. FSDV still lets SSDs manage flash memory
and thus avoids such performance overhead and security
vulnerabilities.

Most related to this work is our own previous
work that proposes a new interface called nameless
writes [20]. With nameless writes, the file system does
not perform allocation and sends only data to the device.
The device then allocates a physical address and returns
it to the file system for future reads. Nameless writes
largely reduce both the memory space and performance
costs of SSD virtualization. However, our study [16]
showed that this approach requires fundamental changes
in device interface, the OS, and the device firmware,
making it difficult to integrate to current systems. An-
other problem with nameless writes is that they require
all I/Os to be de-virtualized and thus are not suitable for
systems where indirection only needs to be removed
dynamically. FSDV requires much less change to file
systems and devices. FSDV is also more dynamic than
nameless writes, since it can be invoked at any time
(e.g., when the device is idle). Thus, FSDV can avoid
affecting foreground I/Os.

VIII. CONCLUSION

We present the FSDV tool which dynamically re-
duces the virtualization costs in flash-based SSDs.
FSDV removes these costs by changing file system
pointers to use device addresses. Our evaluation results
demonstrate that FSDV can remove SSD virtualization
costs significantly and dynamically.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shep-
herd Jin-Soo Kim for their enormously valuable feed-
back and comments. This work was supported in part
by NSF grants CNS-1421033, CNS-1319405, and CNS-
1218405 as well as generous donations from Cisco,
EMC, Facebook, Google, Huawei, IBM, Microsoft,
NetApp, Samsung, Seagate, and VMWare. Any opin-
ions, findings, and conclusions, or recommendations
expressed herein are those of the authors and do not
necessarily reflect the views of the NSF or other insti-
tutions.

REFERENCES

[1] E2fsprogs: Ext2/3/4 Filesystem Utilities. http://e2fsprogs.
sourceforge.net/.

[2] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Generating Realistic Impressions for File-System Benchmark-
ing. In Proceedings of the 7th USENIX Symposium on File and

Storage Technologies (FAST ’09), San Francisco, California,
February 2009.

[3] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
Five-Year Study of File-System Metadata. In Proceedings of

the 5th USENIX Symposium on File and Storage Technologies

(FAST ’07), San Jose, California, February 2007.

[4] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. HarEl,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour. The

Turtles Project: Design and Implementation of Nested Virtual-
ization. In Proceedings of the 9th Symposium on Operating

Systems Design and Implementation (OSDI ’10), Vancouver,
Canada, December 2010.

[5] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and
H.-J. Song. System Software for Flash Memory: A Survey. In
Proceedings of thei 5th International Conference on Embedded

and Ubiquitous Computing (EUC ’06), pages 394–404, August
2006.

[6] E. Gal and S. Toledo. Algorithms and Data Structures for Flash
Memories. ACM Computing Surveys, 37:138–163, June 2005.

[7] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a Flash Trans-

lation Layer Employing Demand-Based Selective Caching of
Page-Level Address Mappings. In Proceedings of the 14th

International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS XIV),
pages 229–240, Washington, DC, March 2009.

[8] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS: A
File System for Virtualized Flash Storage. In Proceedings of

the 8th USENIX Symposium on File and Storage Technologies

(FAST ’10), San Jose, California, February 2010.

[9] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee. A Group-
based Wear-Leveling Algorithm for Large-Capacity Flash
Memory Storage Systems. In Proceedings of the 2007 inter-

national conference on Compilers, architecture, and synthesis

for embedded systems (CASES ’07), October 2007.

[10] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A Superblock-
Based Flash Translation Layer for NAND Flash Memory. In
Proceedings of the 6th ACM & IEEE International conference

on Embedded software (EMSOFT ’08), Seoul, Korea, August
2006.

[11] A. Kawaguchi, S. Nishioka, and H. Motoda. A Flash-Memory
Based File System. In Proceedings of the USENIX 1995 Winter

Technical Conference, New Orleans, Louisiana, January 1995.

[12] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2FS: A New File
System for Flash Storage. In Proceedings of the 13th USENIX

Symposium on File and Storage Technologies (FAST ’15), Santa
Clara, California, February 2015.

[13] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST: Locality-Aware
Sector Translation for NAND Flash Memory-Based Storage
Systems. In Proceedings of the International Workshop on

Storage and I/O Virtualization, Performance, Energy, Evalu-

ation and Dependability (SPEED2008), February 2008.

[14] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-
J. Song. A Log Buffer-Based Flash Translation Layer Using
Fully-Associative Sector Translation. IEEE Transactions on

Embedded Computing Systems, 6, 2007.

[15] Samsung. Samsung SSD 840 Pro. http://www.samsung.com/
uk/consumer/memory-cards-hdd-odd/ssd/840-pro.

[16] M. Saxena, Y. Zhang, M. M. Swift, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Getting Real: Lessons in Transitioning
Research Simulations into Hardware Systems. In Proceedings

of the 11th USENIX Symposium on File and Storage Technolo-

gies (FAST ’13), San Jose, California, February 2013.

[17] Sun Microsystems. Solaris Internals: FileBench. http://www.
solarisinternals.com/wiki/index.php/FileBench.

[18] D. Woodhouse. JFFS2: The Journalling Flash File System,
Version 2, 2003. http://sources.redhat.com/jffs2/jffs2.

[19] YAFFS. YAFFS: A flash file system for embedded use, 2006.
http://www.yaffs.net/.

[20] Yiying Zhang and Leo Prasath Arulraj and Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau. De-indirection for
flash-based ssds with nameless writes. In Proceedings of the

10th USENIX Symposium on File and Storage Technologies

(FAST ’12), San Jose, California, February 2012.

http://e2fsprogs.sourceforge.net/
http://e2fsprogs.sourceforge.net/
http://www.samsung.com/uk/consumer/memory-cards-hdd-odd/ssd/840-pro
http://www.samsung.com/uk/consumer/memory-cards-hdd-odd/ssd/840-pro
http://www.solarisinternals.com/wiki/index.php/FileBench
http://www.solarisinternals.com/wiki/index.php/FileBench
http://sources.redhat.com/jffs2/jffs2
http://www.yaffs.net/

