
Fail-Stutter Fault Tolerance
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin, Madison

Abstract
Traditional fault models present system designers with two ex-
tremes: the Byzantine fault model, which is general and there-
fore difficult to apply, and the fail-stop fault model, which is easier
to employ but does not accurately capture modern device behav-
ior. To address this gap, we introduce the concept of fail-stutter
fault tolerance, a realistic and yet tractable fault model that ac-
counts for both absolute failure and a new range of performance
failures common in modern components. Systems built under the
fail-stutter model will likely perform well, be highly reliable and
available, and be easier to manage when deployed.

1 Introduction
Dealing with failure in large-scale systems remains a chal-
lenging problem. In designing the systems that form the
backbone of Internet services, databases, and storage sys-
tems, onemust account for the possibility or even likelihood
that one or more componentswill cease to operate correctly;
just how one handles such failures determines overall sys-
tem performance, availability, and manageability.
Traditionally, systems have been built with one of two

fault models. At one extreme, there is the Byzantine fail-
ure model. As described by Lamport: “The component can
exhibit arbitrary and malicious behavior, perhaps involving
collusion with other faulty components” [25]. While these
assumptions are appropriate in certain contexts (e.g., secu-
rity), they make it difficult to reason about system behavior.
At the other extreme, a more tractable and pragmatic ap-

proach exists. Known as the fail-stopmodel, this more lim-
ited approach is defined by Schneider as follows: “In re-
sponse to a failure, the component changes to a state that
permits other components to detect a failure has occurred
and then stops” [33]. Thus, each component is either work-
ing or not, and when a component fails, all other compo-
nents can immediately be made aware of it.
The problem with the Byzantine model is that it is gen-

eral, and therefore difficult to apply. The problem with the
fail-stop model is that it is simple, and therefore does not
account for modern device behavior. Thus, we believe there
is a need for a new model – one that is realistic and yet still
tractable. The fail-stop model is a good starting point for a
new model, but it needs to be enhanced in order to account
for the complex behaviors of modern components.
The main reason an enhancement is in order is the in-

creasing complexity of modern systems. For example, the
latest Pentium has 42 million transistors [21], and future

hardware promises even more complexity with the advent
of “intelligent” devices [1, 27]. In software, as code bases
mature, code size increases, and along with it complexity –
the Linux kernel source alone has increased by a factor of
ten since 1994.
Increasing complexity directly affects component behav-

ior, as complex components often do not behave in simple,
predictable ways. For example, two identical disks, made
by the same manufacturer and receiving the same input
stream will not necessarily deliver the same performance.
Disks are not the only purveyor of erratic performance; as
we will discuss within this document, similar behavior has
been observed in many hardware and software components.
Systems built under the “fail-stop illusion” are prone to

poor performance when deployed, performing well when
everything is working perfectly, but failing to deliver good
performance when just a single component does not behave
as expected. Particularly vulnerable are systems that make
static uses of parallelism, usually assuming that all compo-
nents perform identically. For example, striping and other
RAID techniques [28] perform well if every disk in the
system delivers identical performance; however, if perfor-
mance of a single disk is consistently lower than the rest,
the performance of the entire storage system tracks that of
the single, slow disk [6]. Such parallel-performance as-
sumptions are common in parallel databases [16], search
engines [18], and parallel applications [12].
To account for modern device behavior, we believe there

is a need for a new model of fault behavior. The model
should take into account that components sometimes fail,
and that they also sometimes perform erratically. We term
the unexpected and low performance of a component a per-
formance fault, and introduce the fail-stutter fault model,
an extension of the fail-stop model that takes performance
faults into account.
Though the focus of the fail-stutter model is component

performance, the fail-stutter model will also help in build-
ing systems that are more manageable, reliable, and avail-
able. By allowing for plug-and-play operation, incremen-
tal growth, worry-free replacement, and workload modifi-
cation, fail-stutter fault tolerant systems decrease the need
for human intervention and increase manageability. Diver-
sity in system design is enabled, and thus reliability is im-
proved. Finally, fail-stutter fault tolerant systems deliver
consistent performance, which likely improves availability.
In this paper, we first build the case for fail-stutter fault

tolerance via an examination of the literature. We then dis-
cuss the fail-stutter model and its benefits, review related
work, and conclude.



2 The Erratic Behavior of Systems
In this section, we examine the literature to document the
many places where performance faults occur; note that this
list is illustrative and in no means exhaustive. In our survey,
we find that device behavior is becoming increasingly dif-
ficult to understand or predict. In many cases, even when
erratic performance is detected and investigated, no cause
is discovered, hinting at the high complexity of modern
systems. Interestingly, many performance variations come
from research papers in well-controlled laboratory settings,
often running just a single application on homogeneous
hardware; we speculate that component behavior in less-
controlled real-world environments would likely be worse.

2.1 Hardware
We begin our investigation of performance faults with those
that are caused by hardware. We focus on three important
hardware components: processors and their caches, disks,
and network switches. In each case, the increasing com-
plexity of the component over time has led to a richer set of
performance characteristics.

2.1.1 Processors and Caches

Fault Masking: In processors, fault masking is used to
increase yield, allowing a slightly flawed chip to be used;
the result is that chips with different characteristics are sold
as identical. For example, the Viking series of processors
from Sun are examined in [2], where the authors measure
the cache size of each of a set of Viking processors via
micro-benchmark. “The Single SS-51 is our base case. The
graphs reveal that the [effective size of the] first level cache
is only 4K and is direct-mapped.” The specifications sug-
gest a level-one data cache of size 16 KB, with 4-way set
associativity. However, some chips produced by TI had por-
tions of their caches turned off, whereas others, produced
at different times, did not. The study measured applica-
tion performance across the different Vikings, finding per-
formance differences of up to 40% [2].
The PA-RISC from HP [35] also uses fault-masking in

its cache. Schneider reports that the HP cache mechanism
maps out certain “bad” lines to improve yield [34].
Fault-masking is not only present in modern processors.

For example, the Vax-11/780 had a 2-way set associative
cache, and would turn off one of the sets when a failure was
detected within it. Similarly, the Vax-11/750 had a direct-
mapped cache, and would shut off the whole cache under
a fault. Finally, the Univac 1100/60 also had the ability to
shut off portions of its cache under faults [37].
Prediction and Fetch Logic: Processor prediction and
instruction fetch logic is often one of the most complex
parts of a processor. The performance characteristics of
the Sun UltraSPARC-I were studied by Kushman [24], and
he finds that the implementation of the next-field predic-
tors, fetching logic, grouping logic, and branch-prediction
logic all can lead to the unexpected run-time behavior of
programs. Simple code snippets are shown to exhibit non-
deterministic performance – a program, executed twice on

the same processor under identical conditions, has run times
that vary by up to a factor of three. Kushman discovered
four such anomalies, though the cause of two of the anoma-
lies remains unknown.
Replacement Policy: Hardware cache replacement poli-
cies also can lead to unexpected performance. In their work
on replicated fault-tolerance, Bressoud and Schneider find
that: “The TLB replacement policy on our HP 9000/720
processors was non-deterministic. An identical series of
location-references and TLB-insert operations at the pro-
cessors running the primary and backup virtual machines
could lead to different TLB contents” [10], p. 6, ¶ 2. The
reason for the non-determinism is not given, nor does it ap-
pear to be known, as it surprised numerous HP engineers.

2.1.2 Disks

Fault Masking: Disks also perform some degree of fault
masking. As documented in [6], a simple bandwidth ex-
periment shows differing performance across 5400-RPM
Seagate Hawk drives. Although most of the disks deliver
5.5 MB/s on sequential reads, one such disk delivered only
5.0 MB/s. Because the lesser-performing disk had three
times the block faults than other devices, the author hypoth-
esizes that SCSI bad-block remappings, transparent to both
users and file systems, were the culprit.
Bad-block remapping is also an old technique. Early op-

erating systems for the Univac 1100 series would record
which tracks of a disk were faulty, and then avoid using
them for subsequent writes to the disk [37].
Timeouts: Disks tend to exhibit sporadic failures. A study
of a 400-disk farm over a 6-month period reveals that: “The
largest source of errors in our system are SCSI timeouts and
parity problems. SCSI timeouts and parity errors make up
49% of all errors; when network errors are removed, this
figure rises to 87% of all error instances” [38], p. 7, ¶ 3. In
examining their data further, one can ascertain that a time-
out or parity error occurs roughly two times per day on av-
erage. These errors often lead to SCSI bus resets, affecting
the performance of all disks on the degraded SCSI chain.
Similarly, intermittent disk failures were encountered by

Bolosky et al. [9]. They noticed that disks in their video
file server would go off-line at random intervals for short
periods of time, apparently due to thermal recalibrations.
Geometry: Though the previous discussions focus on per-
formance fluctuations across devices, there is also a per-
formance differential present within a single disk. As doc-
umented in [26], disks have multiple zones, with perfor-
mance across zones differing by up to a factor of two. Al-
though this seems more “static” than other examples, unless
disks are treated identically, different disks will have differ-
ent layouts and thus different performance characteristics.
Unknown Cause: Sometimes even careful research does
not uncover the cause of I/O performance problems. In their
work on external sorting, Rivera and Chien encounter disk
performance irregularities: “Each of the 64 machines in the
cluster was tested; this revealed that four of them had about
30% slower I/O performance. Therefore, we excluded them
from our subsequent experiments” [30], p. 7, last ¶.



A study of the IBM Vesta parallel file system reveals:
“The results shown are the best measurements we obtained,
typically on an unloaded system. [...] In many cases there
was only a small (less than 10%) variance among the dif-
ferent measurements, but in some cases the variance was
significant. In these cases there was typically a cluster of
measurements that gave near-peak results, while the other
measurements were spread relatively widely down to as low
as 15-20% of peak performance” [15], p. 250, ¶ 2.

2.1.3 Network Switches

Deadlock: Switches have complex internal mechanisms
that sometimes cause problematic performance behavior.
In [6], the author describes a recurring network deadlock
in a Myrinet switch. The deadlock results from the struc-
ture of the communication software; by waiting too long be-
tween packets that form a logical “message”, the deadlock-
detection hardware triggers and begins the deadlock recov-
ery process, halting all switch traffic for two seconds.
Unfairness: Switches often behave unfairly under high
load. As also seen in [6], if enough load is placed on a
Myrinet switch, certain routes receive preference; the result
is that the nodes behind disfavored links appear “slower”
to a sender, even though they are fully capable of receiving
data at link rate. In that work, the unfairness resulted in a
50% slowdown to a global adaptive data transfer.
Flow Control: Networks also often have internal flow-
control mechanisms, which can lead to unexpected perfor-
mance problems. Brewer and Kuszmaul show the effects of
a few slow receivers on the performance of all-to-all trans-
poses in the CM-5 data network [12]. In their study, once a
receiver falls behind the others, messages accumulate in the
network and cause excessive network contention, reducing
transpose performance by almost a factor of three.

2.2 Software
Sometimes unexpected performance arises not due to hard-
ware peculiars, but because of the behavior of an impor-
tant software agent. One common culprit is the operating
system, whose management decisions in supporting vari-
ous complex abstractions may lead to unexpected perfor-
mance surprises. Another manner in which a component
will seem to exhibit poor performance occurs when another
application uses it at the same time. This problem is par-
ticularly acute for memory, which swaps data to disk when
over-extended.

2.2.1 Operating Systems and Virtual Machines

Page Mapping: Chen and Bershad have shown that
virtual-memory mapping decisions can reduce application
performance by up to 50% [14]. Virtually all machines
today use physical addresses in the cache tag. Unless the
cache is small enough so that the page offset is not used in
the cache tag, the allocation of pages in memory will affect
the cache-miss rate.
File Layout: In [6], a simple experiment demonstrates how
file system layout can lead to non-identical performance

across otherwise identical disks and file systems. Sequen-
tial file read performance across aged file systems varies by
up to a factor of two, even when the file systems are other-
wise empty. However, when the file systems are recreated
afresh, sequential file read performance is identical across
all drives in the cluster.
Background Operations: In their work on a fault-tolerant,
distributed hash table, Gribble et al. find that untimely
garbage collection causes one node to fall behind its mir-
ror in a replicated update. The result is that one machine
over-saturates and thus is the bottleneck [20]. Background
operations are common in many systems, including clean-
ers in log-structured file systems [31], and salvagers that
heuristically repair inconsistencies in databases [19].

2.2.2 Interference From Other Applications

Memory Bank Conflicts: In their work on scalar-vector
memory interference, the authors show that perturbations to
a vector reference stream can reduce memory system effi-
ciency by up to a factor of two [29].
Memory Hogs: In their recent paper, Brown and Mowry
show the effect of an out-of-core application on interactive
jobs [13]. Therein, the response time of the interactive job
is shown to be up to 40 times worse when competing with a
memory-intensive process for memory resources.
CPUHogs: Similarly, interference to CPU resources leads
to unexpected slowdowns. From a different sorting study:
“The performance of NOW-Sort is quite sensitive to vari-
ous disturbances and requires a dedicated system to achieve
’peak’ results” [5], p. 8, ¶ 1. A node with excess CPU load
reduces global sorting performance by a factor of two.

2.3 Summary

We have documented many cases where components ex-
hibit unexpected performance. As both hardware and soft-
ware components increase in complexity, they are more
likely to perform internal error correction and fault mask-
ing, have different performance characteristics depend-
ing on load and usage, and even perhaps behave non-
deterministically. Note that short-term performance fluc-
tuations that occur randomly across all components can
likely be ignored; particularly harmful are slowdowns that
are long-lived and likely to occur on a subset of compo-
nents. Those types of faults cannot be handled with tradi-
tional methods, and thus must be incorporated into a model
of component behavior.

3 Fail-Stutter Fault Tolerance
In this section, we discuss the topics that we believe are
central to the fail-stutter model. Though we have not yet
fully formalized the model, we outline a number of issues
that must be resolved in order to do so. We then cover an
example, and discuss the potential benefits of utilizing the
fail-stutter model.



3.1 Towards a Fail-Stutter Model
We nowdiscuss issues that are central in developing the fail-
stutter model. We focus on three main differences from the
fail-stop model: the separation of performance faults from
correctness faults, the notification of other components of
the presence of a performance fault within the system, and
performance specifications for each component.
Separation of performance faults from correctness faults.
We believe that the fail-stutter model must distinguish two
classes of faults: absolute (or correctness) faults, and per-
formance faults. In most scenarios, we believe the appro-
priate manner in which to deal with correctness faults such
as total disk or processor failure is to utilize the fail-stop
model. Schneider considers a component faulty “once its
behavior is no longer consistent with its specification” [33].
In response to such a correctness failure, the component
changes to a state that permits other components to detect
the failure, and then the component stops operating. In ad-
dition, we believe that the fail-stutter model should incorpo-
rate the notion of a performance failure, which, combined
with the above, completes the fail-stutter model. A compo-
nent should be considered performance-faulty if it has not
absolutely failed as defined above and when its performance
is less than that of its performance specification.
We believe this separation of performance and correct-

ness faults is crucial to the model, as there is much to
be gained by utilizing performance-faulty components. In
many cases, devices may often perform at a large fraction
of their expected rate; if many components behave this way,
treating them as absolutely failed components leads to a
large waste of system resources.
One difficulty that must be addressed occurs when a com-

ponent responds arbitrarily slowly to a request; in that case,
a performance fault can become blurred with a correctness
fault. To distinguish the two cases, the model may include a
performance threshold within the definition of a correctness
fault, i.e., if the disk request takes longer than T seconds to
service, consider it absolutely failed. Performance faults fill
in the rest of the regime when the device is working.
Notification of other components. One major departure
from the fail-stop model is that we do not believe that other
components need be informed of all performance failures
when they occur, for the following reasons. First, erratic
performance may occur quite frequently, and thus distribut-
ing that information may be overly expensive. Further, a
performance failure from the perspective of one component
may not manifest itself to others (e.g., the failure is caused
by a bad network link). However, if a component is persis-
tently performance-faulty, it may be useful for a system to
export information about component “performance state”,
allowing agents within the system to readily learn of and
react to these performance-faulty constituents.
Performance specifications. Another difficulty that arises
in defining the fail-stutter model is arriving at a performance
specification for components of the system. Ideally, we be-
lieve the fail-stutter model should present the system de-
signer with a trade-off. At one extreme, a model of compo-
nent performance could be as simple as possible: “this disk

delivers bandwidth at 10 MB/s.” However, the simpler the
model, the more likely performance faults occur, i.e., the
more likely performance deviates from its expected level.
Thus, because different assumptions can be made, the sys-
tem designer could be allowed some flexibility, while still
drawing attention to the fact that devices may not perform
as expected. The designer must also have a good model of
how often various performance faults occur, and how long
they last; both of these are environment and component spe-
cific, and will strongly influence how a system should be
built to react to such failures.

3.2 An Example
We now sketch how the fail-stutter model could be em-
ployed for a simple example given different assumptions
about performance faults. Specifically, we consider three
scenarios in order of increasingly realistic performance as-
sumptions. Although we omit many details necessary for
complete designs, we hope to illustrate how the fail-stutter
model may be utilized to enable more robust system con-
struction. We assume that our workload consists of writing
D data blocks in parallel to a set of 2 ·N disks and that data
is encoded across the disks in a RAID-10 fashion (i.e., each
pair of disks is treated as a RAID-1 mirrored pair and data
blocks are striped across these mirrors a la RAID-0).
In the first scenario, we use only the fail-stop model, as-

suming (perhaps naively) that performance faults do not oc-
cur. Thus, absolute failures are accounted for and handled
accordingly – if an absolute failure occurs on a single disk,
it is detected and operation continues, perhaps with a recon-
struction initiated to a hot spare; if two disks in a mirror-pair
fail, operation is halted. Since performance faults are not
considered in the design, each pair (and thus each disk) is
given the same number of blocks to write: D

N . Therefore,
if a performance fault occurs on any of the pairs, the time
to write to storage is determined by the slow pair. Assum-
ing N − 1 of the disk-pairs can write at B MB/s but one
disk-pair can write at only b MB/s, with b < B, perceived
throughput is reduced to N · bMB/s.
In the second scenario, in addition to absolute faults, we

consider performance faults that are static in nature; that is,
we assume the performance of a mirror-pair is relatively sta-
ble over time, but may not be uniform across disks. Thus,
within our design, we compensate for this difference. One
option is to gauge the performance of each disk once at in-
stallation, and then use the ratios to stripe data proportion-
ally across the mirror-pairs; we may also try to pair disks
that perform similarly, since the rate of each mirror is de-
termined by the rate of its slowest disk. Given a single
slow disk, if the system correctly gauges performance,write
throughput increases to (N − 1) · B + b MB/s. However,
if any disk does not perform as expected over time, perfor-
mance again tracks the slow disk.
Finally, in the third scenario, we consider more general

performance faults to include those in which disks perform
at arbitrary rates over time. One design option is to contin-
ually gauge performance and to write blocks across mirror-
pairs in proportion to their current rates. We note that this



approach increases the amount of bookkeeping: because
these proportionsmay change over time, the controller must
record where each block is written. However, by increasing
complexity, we create a system that is more robust in that it
can deliver the full available bandwidth under a wide range
of performance faults.

3.3 Benefits of Fail-Stutter

Perhaps the most important consideration in introducing a
new model of component behavior is the effect it would
have if systems utilized such a model. We believe such sys-
tems are likely to be more available, reliable, and manage-
able than systems built only to tolerate fail-stop failures.
Manageability: Manageability of a fail-stutter fault tol-
erant system is likely to be better than a fail-stop system,
for the following reasons. First, fail-stutter fault tolerance
enables true “plug-and-play”; when the system administra-
tor adds a new component, the system uses whatever per-
formance it provides, without any additional involvement
from the operator – a true “no futz” system [32]. Second,
such a system can be incrementally grown [11], allowing
newer, faster components to be added; adding these faster
components to incrementally scale the system is handled
naturally, because the older components simply appear to be
performance-faulty versions of the new ones. Third, admin-
istrators no longer need to stockpile components in antici-
pation of their discontinuation. Finally, newworkloads (and
the imbalances they may bring) can be introduced into the
system without fear, as those imbalances are handled by the
performance-fault tolerance mechanisms. In all cases, the
need for human intervention is reduced, increasing overall
manageability. As Van Jacobson said, “Experience shows
that anything that needs to be configured will be misconfig-
ured” [23], p. 6; by removing the need for intricate tuning,
the problems caused by misconfiguration are eradicated.
Availability: Gray and Reuter define availability as fol-
lows: “The fraction of the offered load that is processed
with acceptable response times” [19]. A system that only
utilizes the fail-stop model is likely to deliver poor perfor-
mance under even a single performance failure; if perfor-
mance does not meet the threshold, availability decreases.
In contrast, a system that takes performance failures into ac-
count is likely to deliver consistent, high performance, thus
increasing availability.
Reliability: The fail-stutter model is also likely to improve
overall system reliability in at least two ways. First, “design
diversity” is a desirable property for large-scale systems; by
including components of different makes and manufactur-
ers, problems that occur when a collection of identical com-
ponents suffer from an identical design flaw are avoided. As
Gray and Reuter state, design diversity is akin to having “a
belt and suspenders, not two belts or two suspenders” [19].
A system that handles performance faults naturally works
well with heterogeneously-performing parts. Second, reli-
ability may also be enhanced through the detection of per-
formance anomalies, as erratic performancemay be an early
indicator of impending failure.

4 Related Work
Our own experience with I/O-intensive application pro-
gramming in clusters convinced us that erratic performance
is the norm in large-scale systems, and that system support
for building robust programs is needed [5]. Thus, we began
work on River, a programming environment that provides
mechanisms to enable consistent and high performance in
spite of erratic performance in underlying components, fo-
cusing mainly on disks [7]. However, River itself does
not handle absolute correctness faults in an integrated fash-
ion, relying either upon retry-after-failure or a checkpoint-
restart package. River also requires applications to be com-
pletely rewritten to enable performance robustness, which
may not be appropriate in many situations.
Some other researchers have realized the need for a

model of fault behavior that goes beyond simple fail-stop.
The earliest that we are aware of is Shasha and Turek’s work
on “slow-down” failures [36]. The authors design an al-
gorithm that runs transactions correctly in the presence of
such failures, by simply issuing new processes to do the
work elsewhere, and reconciling properly so as to avoid
work replication. However, the authors assume that such
behavior is likely only to occur due to network congestion
or processes slowed by workload interference; indeed, they
assume that a fail-stop model for disks is quite appropriate.
DeWitt and Gray label periodic performance fluctuations

in hardware interference [17]. They do not characterize the
nature of these problems, though they realize its potential
impact on parallel operations.
Birman’s recent work on Bimodal Multicast also ad-

dresses the issue of nodes that “stutter” in the context of
multicast-based applications [8]. Birman’s solution is to
change the semantics of multicast from absolute delivery
requirements to probabilistic ones, and thus gracefully de-
grade when nodes begin to perform poorly.
The networking literature is replete with examples of

adaptation and design for variable performance, with the
prime example of TCP [22]. We believe that similar tech-
niques will need to be employed in the development of
adaptive, fail-stutter fault-tolerant algorithms.

5 Conclusions
Too many systems are built assuming that all components
are identical, that component behavior is static and un-
changing in nature, and that each component either works
or does not. Such assumptions are dangerous, as the in-
creasing complexity of computer systems hints at a future
where even the “same” components behave differently, the
way they behave is dynamic and oft-changing, and there is
a large range of normal operation that falls between the bi-
nary extremes of working and not working. By utilizing the
fail-stutter model, systems are more likely to be manage-
able, available, and reliable, and work well when deployed
in the real world.
Many challenges remain. The fail-stutter model must be

formalized, and new models of component behavior must



be developed, requiring both measurement of existing sys-
tems as well as analytical development. New adaptive algo-
rithms, which can cope with this more difficult class of fail-
ures, must be designed, analyzed, implemented, and tested.
The true costs of building such a system must be discerned,
and different approaches need to be evaluated.
As a first step in this direction, we are exploring the

construction of fail-stutter-tolerant storage in the Wiscon-
sin Network Disks (WiND) project [3, 4]. Therein, we are
investigating the adaptive software techniques that we be-
lieve are central to building robust and manageable storage
systems. We encourage others to consider the fail-stutter
model in their endeavors as well.

6 Acknowledgements
We thank the following people for their comments on this
or earlier versions of this paper: David Patterson, Jim Gray,
David Culler, Joseph Hellerstein, Eric Anderson, Noah
Treuhaft, John Bent, Tim Denehy, Brian Forney, Florentina
Popovici, and Muthian Sivathanu. Also, we would like to
thank the anonymous reviewers for their many thoughtful
suggestions. This work is sponsored by NSF CCR-0092840
and NSF CCR-0098274.

References
[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks. In ASPLOS VIII,

San Jose, CA, Oct. 1998.
[2] R. H. Arpaci, A. C. Dusseau, and A. M. Vahdat. To-

wards Process Management on a Network of Workstations.
http://www.cs.berkeley.edu/ remzi/258-final, May 1995.

[3] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. The Wiscon-
sin Network Disks Project. http://www.cs.wisc.edu/wind,
2000.

[4] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, J. Bent, B. Forney,
S. Muthukrishnan, F. Popovici, and O. Zaki. Manageable Storage
via Adaptation in WiND. In IEEE Int’l Symposium on Cluster Com-
puting and the Grid (CCGrid’2001), May 2001.

[5] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson. Searching for the Sorting Record:
Experiences in Tuning NOW-Sort. In SPDT ’98, Aug. 1998.

[6] R. H. Arpaci-Dusseau. Performance Availability for Networks of
Workstations. PhD thesis, University of California, Berkeley, 1999.

[7] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M.
Hellerstein, D. A. Patterson, and K. Yelick. Cluster I/O with River:
Making the Fast Case Common. In IOPADS ’99, May 1999.

[8] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Bidiu, and
Y. Minsky. Bimodal multicast. TOCS, 17(2):41–88, May 1999.

[9] W. J. Bolosky, J. S. B. III, R. P. Draves, R. P. Fitzgerald, G. A. Gib-
son, M. B. Jones, S. P. Levi, N. P. Myhrvold, and R. F. Rashid. The
Tiger Video Fileserver. Technical Report 96-09, Microsoft Research,
1996.

[10] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault Toler-
ance. In SOSP 15, Dec. 1995.

[11] E. A. Brewer. The Inktomi Web Search Engine. Invited Talk: 1997
SIGMOD, May 1997.

[12] E. A. Brewer and B. C. Kuszmaul. How to Get Good Performance
from the CM-5 Data Network. In Proceedings of the 1994 Interna-
tional Parallel Processing Symposium, Cancun, Mexico, April 1994.

[13] A. D. Brown and T. C. Mowry. Taming the Memory Hogs: Us-
ing Compiler-Inserted Releases to Manage Physical Memory Intelli-
gently. In OSDI 4, San Diego, CA, October 2000.

[14] J. B. Chen and B. N. Bershad. The Impact of Operating System
Structure on Memory System Performance. In Proceedings of the
14th ACM Symposium on Operating Systems Principles, pages 120–
133, December 1993.

[15] P. F. Corbett and D. G. Feitelson. The Vesta parallel file system. ACM
Transactions on Computer Systems, 14(3):225–264, August 1996.

[16] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I.
Hsaio, and R. Rasmussen. The Gamma database machine project.
IEEE Transactions on Knowledge and Data Engineering, 2(1):44–
62, March 1990.

[17] D. J. DeWitt and J. Gray. Parallel database systems: The future of
high-performance database systems. Communications of the ACM,
35(6):85–98, June 1992.

[18] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-Based Scalable Network Services. In SOSP 16, pages 78–91,
Saint-Malo, France, Oct. 1997.

[19] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[20] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, , and D. Culler. Scal-
able, Distributed Data Structures for Internet Service Construction.
In OSDI 4, San Diego, CA, October 2000.

[21] Intel. Intel Pentium 4 Architecture Product Briefing Home Page.
http://developer.intel.com/design/Pentium4/prodbref, January 2001.

[22] V. Jacobson. Congestion avoidance and control. In Proceedings of
ACM SIGCOMM ’88, pages 314–329, August 1988.

[23] V. Jacobson. How to Kill the Internet. ftp://ftp.ee.lbl.gov/talks/vj-
webflame.ps.Z, 1995.

[24] N. A. Kushman. Performance Nonmonotonocities: A Case Study of
the UltraSPARC Processor. Master’s thesis, Massachussets Institute
of Technology, Boston, MA, 1998.

[25] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Sys-
tems, 4(3):382–401, July 1982.

[26] R. V. Meter. Observing the Effects of Multi-Zone Disks. In Proceed-
ings of the 1997 USENIX Conference, Jan. 1997.

[27] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. Intelligent RAM (IRAM):
Chips That Remember And Compute. In 1997 IEEE International
Solid-State Circuits Conference, San Francisco, CA, February 1997.

[28] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Ar-
rays of Inexpensive Disks (RAID). In SIGMOD ’88, pages 109–116,
Chicago, IL, June 1988. ACM Press.

[29] R. Raghavan and J. Hayes. Scalar-Vector Memory Interference in
Vector Computers. In The 1991 International Conference on Parallel
Processing, pages 180–187, St. Charles, IL, August 1991.

[30] L. Rivera and A. Chien. A High Speed Disk-to-Disk Sort on a Win-
dows NT Cluster Running HPVM. Submitted for pulication, 1999.

[31] M. Rosenblum and J. Ousterhout. The Design and Implementation
of a Log-Structured File System. ACM Transactions on Computer
Systems, 10(1):26–52, February 1992.

[32] M. Satyanarayanan. Digest of HotOS VII.
http://www.cs.rice.edu/Conferences/HotOS/digest, March 1999.

[33] F. B. Schneider. Implementing Fault-Tolerant Services Using The
State Machine Approach: A Tutorial. ACM Computing Surveys,
22(4):299–319, December 1990.

[34] F. B. Schneider. Personal Communication, February 1999.
[35] A. P. Scott, K. P. Burkhart, A. Kumar, R. M. Blumberg, and G. L.

Ranson. Four-way Superscalar PA-RISC Processors. Hewlett-
Packard Journal, 48(4):8–15, August 1997.

[36] D. Shasha and J. Turek. Beyond Fail-Stop: Wait-Free Serializability
and Resiliency in the Presence of Slow-Down Failures. Technical
Report 514, Computer Science Department, NYU, September 1990.

[37] D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems: Design
and Evaluation. A K Peters, 3rd edition, 1998.

[38] N. Talagala and D. Patterson. An Analysis of Error Behaviour in
a Large Storage System. In IPPS Workshop on Fault Tolerance in
Parallel and Distributed Systems, 1999.


