
The Unwritten Contract of Solid State Drives
Jun He Sudarsun Kannan Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin–Madison

Abstract
We perform a detailed vertical analysis of application perfor-
mance atop a range of modern file systems and SSD FTLs.
We formalize the “unwritten contract” that clients of SSDs
should follow to obtain high performance, and conduct our
analysis to uncover application and file system designs that
violate the contract. Our analysis, which utilizes a highly
detailed SSD simulation underneath traces taken from real
workloads and file systems, provides insight into how to bet-
ter construct applications, file systems, and FTLs to realize
robust and sustainable performance.

1. Introduction
In-depth performance analysis lies at the heart of systems
research. Over many years, careful and detailed analysis
of memory systems [26, 81], file systems [36, 50, 51, 66,
84, 87], parallel applications [91], operating system kernel
structure [35], and many other aspects of systems [25, 29,
37, 41, 65] has yielded critical, and often surprising, insights
into systems design and implementation.

However, perhaps due to the rapid evolution of storage
systems in recent years, there exists a large and impor-
tant gap in our understanding of I/O performance across
the storage stack. New data-intensive applications, such as
LSM-based (Log-Structured Merge-tree) key-value stores,
are increasingly common [6, 14]; new file systems, such
as F2FS [62], have been created for an emerging class of
flash-based Solid State Drives (SSDs); finally, the devices
themselves are rapidly evolving, with aggressive flash-based
translation layers (FTLs) consisting of a wide range of op-
timizations. How well do these applications work on these
modern file systems, when running on the most recent class
of SSDs? What aspects of the current stack work well, and
which do not?

The goal of our work is to perform a detailed vertical
analysis of the application/file-system/SSD stack to answer
the aforementioned questions. We frame our study around
the file-system/SSD interface, as it is critical for achieving
high performance. While SSDs provide the same interface

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

c� 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3064176.3064187

as hard drives, how higher layers utilize said interface can
greatly affect overall throughput and latency.

Our first contribution is to formalize the “unwritten con-
tract” between file systems and SSDs, detailing how up-
per layers must treat SSDs to extract the highest instan-
taneous and long-term performance. Our work here is in-
spired by Schlosser and Ganger’s unwritten contract for hard
drives [82], which includes three rules that must be tacitly
followed in order to achieve high performance on Hard Disk
Drives (HDDs); similar rules have been suggested for SMR
(Shingled Magnetic Recording) drives [46].

We present five rules that are critical for users of SSDs.
First, to exploit the internal parallelism of SSDs, SSD clients
should issue large requests or many outstanding requests
(Request Scale rule). Second, to reduce translation-cache
misses in FTLs, SSDs should be accessed with locality
(Locality rule). Third, to reduce the cost of converting page-
level to block-level mappings in hybrid-mapping FTLs,
clients of SSDs should start writing at the aligned begin-
ning of a block boundary and write sequentially (Aligned
Sequentiality rule). Fourth, to reduce the cost of garbage
collection, SSD clients should group writes by the likely
death time of data (Grouping By Death Time rule). Fifth,
to reduce the cost of wear-leveling, SSD clients should cre-
ate data with similar lifetimes (Uniform Data Lifetime rule).
The SSD rules are naturally more complex than their HDD
counterparts, as SSD FTLs (in their various flavors) have
more subtle performance properties due to features such as
wear leveling [30] and garbage collection [31, 71].

We utilize this contract to study application and file sys-
tem pairings atop a range of SSDs. Specifically, we study
the performance of four applications – LevelDB (a key-
value store), RocksDB (a LevelDB-based store optimized
for SSDs), SQLite (a more traditional embedded database),
and Varmail (an email server benchmark) – running atop a
range of modern file systems – Linux ext4 [69], XFS [88],
and the flash-friendly F2FS [62]. To perform the study and
extract the necessary level of detail our analysis requires,
we build WiscSee, an analysis tool, along with WiscSim, a
detailed and extensively evaluated discrete-event SSD sim-
ulator that can model a range of page-mapped and hybrid
FTL designs [48, 54, 57, 74]. We extract traces from each
application/file-system pairing, and then, by applying said
traces to WiscSim, study and understand details of system
performance that previously were not well understood. Wisc-
See and WiscSim are available at http://research.cs.
wisc.edu/adsl/Software/wiscsee/.

Our study yields numerous results regarding how well ap-
plications and file systems adhere to the SSD contract; some
results are surprising whereas others confirm commonly-
held beliefs. For each of the five contract rules, our gen-
eral findings are as follows. For request scale, we find that
log structure techniques in both applications and file sys-
tems generally increase the scale of writes, as desired to
adhere to the contract; however, frequent barriers in both
applications and file systems limit performance and some
applications issue only a limited number of small read re-
quests. We find that locality is most strongly impacted by the
file system; specifically, locality is improved with aggressive
space reuse, but harmed by poor log structuring practices and
legacy HDD block-allocation policies. I/O alignment and se-
quentiality are not achieved as easily as expected, despite
both application and file system log structuring. For death
time, we find that although applications often appropriately
separate data by death time, file systems and FTLs do not
always maintain this separation. Finally, applications should
ensure uniform data lifetimes since in-place-update file sys-
tems preserve the lifetime of application data.

We have learned several lessons from our study. First, log
structuring is helpful for generating write requests at a high
scale, but it is not a panacea and sometimes hurts perfor-
mance (e.g., log-structured file systems fragment applica-
tion data structures, producing workloads that incur higher
overhead). Second, due to subtle interactions between work-
loads and devices, device-specific optimizations require de-
tailed understanding: some classic HDD optimizations per-
form surprisingly well on SSDs while some SSD-optimized
applications and file systems perform poorly (e.g., F2FS
delays trimming data, which subsequently increases SSD
space utilization, leading to higher garbage collection costs).
Third, simple workload classifications (e.g., random vs. se-
quential writes) are orthogonal to important rules of the
SSD unwritten contract (e.g., grouping by death time) and
are therefore not useful; irrelevant workload classifications
can lead to oversimplified myths about SSDs (e.g., random
writes considered harmful [71]).

This paper is organized as follows. Section 2 introduces
the background of SSDs. Section 3 describes the rules of the
SSD unwritten contract. Section 4 presents the methodology
of our analysis. In Section 5, we conduct vertical analysis
of applications, file systems and FTLs to examine behaviors
that violate the contract rules. Section 6 introduces related
work. Section 7 concludes this paper.

2. Background
The most popular storage technology for SSDs is NAND
flash. A flash chip consists of blocks, which are typically
hundreds of KBs (e.g., 128 KB), or much larger (e.g., 4 MB)
for large-capacity SSDs [16, 21]. A block consists of pages,
which often range from 2 KB to 16 KB [9, 10, 17]. Single-
Level Cell (SLC) flash, which stores a single bit in a memory
element, usually has smaller page sizes, lower latency, better

endurance and higher costs than Multi-Level Cell (MLC)
flash, which stores multiple bits in a memory element [28].

Flash chips support three operations: read, erase, and
program (or write). Reading and programming are usually
performed at the granularity of a page, whereas erasing can
only be done for an entire block; one can program pages only
after erasing the whole block. Reading is often much faster
than programming (e.g., eight times faster [16]), and erasing
is the slowest, but can have higher in-chip bandwidth than
programming (e.g., 83 MB/s for erase as compared to 9.7
MB/s for write [16]). A block is usually programmed from
the low page to high page to avoid program disturbance, an
effect that changes nearby bits unintentionally [10, 11, 28].

Modern SSDs use a controller to connect flash chips via
channels, which are the major source of parallelism. The
number of channels in modern SSDs can range from a few to
dozens [5, 40, 42, 73]. The controller uses RAM to store its
operational data, client data, and the mapping between host
logical addresses and physical addresses.

To hide the complexity of SSD internals, the controller
usually contains a piece of software called an FTL (Flash
Translation Layer); the FTL provides the host with a simple
block interface and manages all the operations on the flash
chips. FTLs can employ vastly different designs [48, 54, 57,
63, 64, 67, 74, 75, 93, 95]. Although not explicitly stated,
each FTL requires clients to follow a unique set of rules in
order to achieve good performance. We call these implicit
rules the unwritten contract of SSDs.

3. Unwritten Contract
Users of an SSD often read its written contract, which is a
specification of its interfaces. Violation of the written con-
tract will lead to failures; for example, incorrectly format-
ted commands will be rejected by the receiving storage de-
vice. In contrast, the unwritten contract [82] of an SSD is
an implicit performance specification that stems from its in-
ternal architecture and design. An unwritten contract is not
enforced but violations significantly impact performance.

SSDs have different performance characteristics from
HDDs in part due to unpredictable background activities
such as garbage collection and wear-leveling. On an SSD,
an access pattern may have excellent performance at first,
but degrade due to background activities [47, 62, 71, 85].
To reflect this distinction, we call these regimes immedi-
ate performance and sustainable performance. Immediate
performance is the maximum performance achievable by a
workload’s I/O pattern. Sustainable performance is the per-
formance that could be maintained by an SSD given this
workload in the long term.

In this section, we summarize the rules of the unwritten
contract of SSDs and their impact on immediate and sustain-
able performance.
3.1 Request Scale
Modern SSDs have multiple independent units, such as
channels, that can work in parallel. To exploit this paral-

Block 4

8Logical 9 10 11

16 17 18 19Physical

8 9 10 11

16 17 18 19

Violation
Write Order 8, 9, 10, 11 9, 10, 11, 8

Block 4

Host
SSD

M
ap

pi
ng

Figure 1: Example of Aligned Sequentiality and a viola-
tion of it. Each block has four pages. Writes must be pro-
grammed on a flash block from low to high pages to avoid
program disturbance. The page-level mapping on the left can
be converted to a single block-level mapping: logical block
2 ! physical block 4. The example on the right cannot be
converted without re-arranging the data.

lelism, one common technique when request sizes are large
is to stripe each request into sub-requests and send them to
different units [25, 34, 45, 53]. When request sizes are small,
the FTL can distribute the requests to different units. To
concurrently process multiple host requests, modern SSDs
support Native Command Queuing (NCQ)1 or similar fea-
tures [12, 19]; a typical maximum queue depth of modern
SATA SSDs is 32 requests [4, 34].

To capture the importance of exploiting internal paral-
lelism in an SSD, the first rule of our unwritten contract is
Request Scale: SSD clients should issue large data requests
or multiple concurrent requests. A small request scale leads
to low resource utilization and reduces immediate and sus-
tainable performance [34, 53].

3.2 Locality
Because flash chips do not allow in-place updates, an FTL
must maintain a dynamic mapping between logical2 and
physical pages. A natural choice is a page-level mapping,
which maintains a one-to-one mapping between logical and
physical pages. Unfortunately, such a mapping requires a
large amount of RAM, which is scarce due to its high price,
relatively high power consumption, and competing demands
for mapping and data caching [48]. With a page size of 2
KB, a 512-GB SSD would require 2 GB of RAM.3 Having
larger pages, such as those (� 4 KB) of popular MLC flash,
will reduce the required space. However, SLC flash, which
often has pages that are not larger than 2 KB, is still often
used to cache bursty writes because of its lower latency [23].
The use of SLC flash increases the demand for RAM.

On-demand FTLs, which store mappings in flash and
cache them in RAM, reduce the RAM needed for mappings.
The mapping for a translation is loaded only when needed

1 NCQ technology was proposed to allow sending multiple requests to an
HDD so the HDD can reorder them to reduce seek time. Modern SSDs
employ NCQ to increase the concurrency of requests.
2 We call the address space exposed by the SSD the logical space; a unit in
the logical space is a logical page.
3 2GB = (512GB/2KB)⇤8 bytes, where the 8 bytes include 4 bytes
for each logical and physical page number.

and may be evicted to make room for new translations.
Locality is needed for such a translation cache to work;
some FTLs exploit only temporal locality [48], while others
exploit both temporal and spatial locality [54, 63, 64].

Thus the contract has a Locality rule: SSD clients should
access with locality. Workloads without locality can incur a
poor immediate performance because frequent cache misses
lead to many translation-related reads and writes [48, 54].
Poor locality also impacts sustainable performance because
data movement during garbage collection and wear-leveling
requires translations and mapping updates.

Locality is not only valuable for reducing required RAM
for translations, but also for other purposes. For example, all
types of SSDs are sensitive to locality due to their data cache.
In addition, for SSDs that arrange flash chips in a RAID-like
fashion, writes with good locality are more likely to update
the same stripe and the parity calculation can thus be batched
and written concurrently [92], improving performance.

3.3 Aligned Sequentiality
Another choice for reducing memory requirements is hy-
brid mapping [57, 63, 64, 74], in which part of the address
space is covered by page-level mappings and the rest by
block-level mappings. Since one entry of a block-level map
can cover much more space than a page-level mapping, the
memory requirements are significantly reduced. For exam-
ple, if 90% of a 512-GB SSD (128 KB block) is covered by
block-level mapping, the hybrid FTL only needs 233 MB.4
A hybrid FTL uses page-level mappings for new data and
converts them to block-level mappings when it runs out of
mapping cache. The cost of such conversions (also known as
merges) depends on the existing page-level mapping, which
in turn depends on the alignment and sequentiality of writes.
The example in Figure 1 demonstrates aligned and sequen-
tial writes and an example of the opposite. To convert the
aligned mapping to block-level, the FTL can simply remove
all page-level mappings and add a block-level mapping. To
convert the unaligned mapping, the FTL has to read all the
data, reorder, and write the data to a new block.

Due to the high cost of moving data, clients of SSDs with
hybrid FTLs should start writing at the aligned beginning
of a block boundary and write sequentially. This Aligned
Sequentiality rule does not affect immediate performance
since the conversion happens later, but violating this rule
degrades sustainable performance because of costly data
movement during the delayed conversion.

3.4 Grouping by Death Time
The death time of a page is the time the page is discarded
or overwritten by the host. If a block has data with different
death times, then there is a time window between the first
and last page invalidations within which both live and dead
data reside in the block. We call such a time window a

4 233MB = (512GB ⇥ 0.9/128KB + 512GB ⇥ 0.1/2KB) ⇥
8 bytes.

SE
G

1
SE

G
2

Time

A A A A

SEG1 LOG

B B B B

SEG2 LOG
Physical Space

A
A

A
A

B B B
B

SE
G

1

Time

A A A A

SEG1 LOG

B B B B

Physical Space

Lo
gi

ca
l S

pa
ce

A

A

A

A
B

B

B

B

Grouping By Order Grouping By Space

Figure 2: Demonstration of Grouping by Death Time.
Data A and B have different death times. In the figure, Verti-
cal locations of the data in the same group are randomized to
emphasize its irrelevance to this rule. Note that grouping by
space is not available in non-segmented FTLs [48, 54, 95].

zombie window and a block in a zombie window a zombie
block. In general, larger zombie windows lead to increased
odds of a block being selected for garbage collection and
incurring costly data movement, as the FTL must move the
live data to a new block and erase the victim block.

Zombie windows can be reduced if data with similar
death times are placed in the same block [38, 44, 56, 76].
There are two practical ways to achieve this. First, the host
can order the writes, so data with similar death times are
gathered in the write sequence. Because many FTLs append
data to a log, the consecutively written data is physically
clustered, as demonstrated in Figure 2 (left). We call this
grouping by order.

Second, the host can place different death groups in
different portions of space. This approach relies on log-
ical space segmentation, which is a popular technique in
FTLs [57, 63, 74]. Because FTLs place data written in dif-
ferent segments to different logs, placing death groups to dif-
ferent logical segments isolates them physically, as demon-
strated in Figure 2 (right). We call this grouping by space.
Grouping by order and grouping by space both help to con-
form to the Grouping By Death Time rule. Note that clients
of segmented FTLs can group by order or space. However,
on non-segmented FTLs, grouping by space does not have
any effect.

The rule of grouping by death time is often misunder-
stood as separating hot and cold data [75, 86, 94], which
essentially can be described as grouping by lifetime. Note
that two pieces of data can have the same lifetime (i.e., hot-
ness) but distant death times. The advice of separating hot
and cold data is inaccurate and misleading.

Grouping by death time does not affect immediate perfor-
mance in page-level FTLs or hybrid FTLs, because in both
cases data is simply appended to the log block. Violation of
this rule impacts sustainable performance due to increasing
the cost of garbage collection.

3.5 Uniform Data Lifetime
Flash cells can endure a limited number of program/erase
(P/E) cycles before wearing out [55, 72]. The number of

Immediate Performance Sustainable Performance
Type RS LC AL GP LT RS LC AL GP LT
Page X X X X X X
Hybrid X X X X

Table 1: The contract rules of on-demand page-level
FTLs and hybrid FTLs. RS: Request Scale, LC: Locality,
AL: Aligned Sequentiality, GP: Grouping By Death Time,
LT: Uniform Data Lifetime. A check mark (X) indicates that
the immediate or sustainable performance of a particular
type of FTL is sensitive to a rule.

P/E cycles is on the order of 103 P/E cycles for recent
commercial SSDs [10, 70, 83] and is expected to decrease
in the future [68]. A cell that is worn out becomes unstable
or completely unusable. Uneven block wearout can lead
to loss of the over-provisioning area of an SSD, which is
critical for performance. Severely uneven wearout can lead
to premature loss of device capacity.

To prevent uneven wear out, FTLs conduct wear-leveling,
which can be dynamic or static [30]. Dynamic wear-leveling
evens the P/E count by using a less-used block when a new
block is needed. Static wear-leveling is often done by copy-
ing data in a rarely-used block to a new location so the block
can be used for more active data. Static wear-leveling can be
done periodically or triggered with a threshold. Since static
wear-leveling incurs costly data movement, which interferes
foreground traffic and increases the total wear of the device,
it is preferable to avoid.

To reduce wear-leveling cost, we introduce the Uniform
Lifetime rule: clients of SSDs should create data with sim-
ilar lifetimes. Data with relatively long lifetimes utilize
blocks for long periods, during which data with shorter life-
times quickly use and reduce the available P/E cycles of
other blocks, leading to uneven wearout. If client data have
more uniform lifetimes, blocks will be released for reuse
after roughly the same amount of time. Lack of lifetime uni-
formity does not directly impact immediate performance,
but impacts sustainable performance as it necessitates wear-
leveling and leads to loss of capacity.
3.6 Discussion
The unwritten contract of SSDs is summarized in Table 1.
Some rules in the contract are independent, and others are
implicitly correlated. For example, Request Scale does not
conflict with the other rules, as it specifies the count and
size of requests, while the rest of the rules specifies the
address and time of data operations. However, some rules are
interdependent in subtle ways; for example, data writes with
aligned sequentiality imply good locality; but good locality
does not imply aligned sequentiality.

The performance impact of rule violations depends on the
characteristics of the FTL and the architecture of the SSD.
For example, violating the request scale rule can have lim-
ited performance impact if the SSD has only one channel and
thus is insensitive to request scale; however, the violation
may significantly reduce performance on an SSD with many

Rule Impact Metric

Request Scale 7.2⇥, 18⇥ Read bandwidth A
10⇥, 4⇥ Write bandwidth B

Locality 1.6⇥ Average response time C
2.2⇥ Average response time D

Aligned Sequentiality 2.5⇥ Execution time E
2.4⇥ Erasure count F

Grouping by Death Time
4.8⇥ Write bandwidth G
1.6⇥ Throughput (ops/sec) H
1.8⇥ Erasure count I

Uniform Data Lifetime 1.6⇥ Write latency J

Table 2: Empirical Performance Impact of Rule Viola-
tions. This table shows the max impact of rule violations re-
ported, directly or indirectly, by each related paper. A (from
Figure 5 of [34]): 7.2⇥ and 18⇥ was obtained by varying
the number of concurrent requests and request size, respec-
tively. B is the same as A, but for write bandwidth. C (from
Figure 11 of [48]): 1.6⇥ was obtained by varying trans-
lation cache size and subsequently cache hit ratio. Thus it
demonstrates the impact of violating the locality rule, which
reduces hit ratio. D (from Figure 9 of [95]) is similar to C.
E and F (from Figure 10(e) of [64]): 2.5⇥ and 2.4⇥ are
obtained by varying the number of blocks with page-level
mapping in a hybrid FTL, which leads to different amounts
of merge operations. G (from Figure 8(b) of [62]): it is ob-
tained by running a synthetic benchmark on ext4 for multiple
times on a full SSD. H (from Figure 3(a) of [56]) and I (from
Figure 8(a) of [38]): the difference is between grouping and
non-grouping workloads. J (from Figure 12 of [30]): the dif-
ference is due to static wear-leveling activities.

channels. Although we do not focus on quantifying such per-
formance impact in this paper, in Table 2 we present the em-
pirical performance impact of rule violations reported, either
directly or indirectly, by existing literature.

The fact that an SSD presents certain rules does not nec-
essarily mean that SSD clients can always comply. For ex-
ample, an SSD may require a client to group data with the
same death time by order, but this requirement may conflict
with the durability needs of the client; specifically, a client
that needs durability may frequently flush metadata and data
together that have different death times. Generally, a client
should not choose an SSD with rules that the client violates.
However, due to the multi-dimensional requirements of the
rules, such an SSD may not be available. To achieve high
performance in such an environment, one must carefully
study the workloads of clients and the reactions of SSDs.

4. Methodology
The contractors of an SSD are the applications and file sys-
tems, which generate the SSD workload, i.e., a sequence of
I/O operations on the logical space. Both applications and
file systems play important roles in determining the I/O pat-
tern. Application developers choose data structures for var-
ious purposes, producing different I/O patterns; for exam-
ple, for searchable data records, using a B-tree to layout
data in a file can reduce the number of I/O transfers, com-

pared with an array or a linked list. File systems, residing
between applications and the SSD, may alter the access pat-
tern of the workload; for example, a log-structured file sys-
tem can turn random writes of applications into sequential
ones [80], which may make workloads comply with the con-
tract of HDDs.
How to analyze SSD behaviors? We run combinations of
applications and file systems on a commodity SSD, collect
block traces and feed the traces to our discrete-event SSD
simulator, WiscSim.5 WiscSim allows us to investigate the
internal behaviors of SSDs. To the best of our knowledge,
WiscSim is the first SSD simulator that supports NCQ [25,
48, 53, 59]. WiscSim is fully functional, supporting multiple
mapping and page allocation schemes, garbage collection,
and wear-leveling. The input trace of WiscSim is collected
on a 32-core machine with a modern SATA SSD with a
maximum NCQ depth of 32 [4], which allows concurrent
processing of up to 32 requests. We use a 1-GB partition
of the 480 GB available space, which allows us to simulate
quickly. Our findings hold for larger devices as our analysis
will demonstrate.
Why design a new simulator? We develop a new simula-
tor instead of extending an existing one (e.g., FlashSim [48,
59], SSDsim [53], and SSD extension for DiskSim [25]).
One reason is that most existing simulators (FlashSim and
SSDsim) do not implement discrete-event simulation6 [48,
53, 59], a method for simulating queuing systems like
SSDs [79]. Without discrete-event simulation, we found it
challenging to implement critical functionality such as con-
current request handling (as mandated by NCQ). The second
reason is that existing simulators do not have comprehensive
tests to ensure correctness. As a result, we concluded that
the amount of work to extend existing platforms exceeded
the implementation of a new simulator.
Why focus on internal metrics instead of end-to-end per-
formance? Our analysis in this paper is based not on end-
to-end performance7, but on the internal states that impact
end-to-end performance. The internal states (e.g., cache miss
ratio, zombie block states, misaligned block states) are fun-
damental sources of performance change. We have validated
the correctness of the internal states with 350 unit tests; some
of the tests examine the end-to-end data integrity to ensure
that all components (e.g., address translation, garbage col-
lection) work as expected.
What are the applications studied? We study a vari-
ety of applications, including LevelDB (version 1.18) [6],
RocksDB (version 4.11.2) [14], SQLite (Roll Back mode
and Write-Ahead-Logging mode, version 3.8.2) [18] and

5 WiscSim has 10,000 lines of code for SSD simulation core. WiscSee, which
includes WiscSim, has 32,000 lines of code in total. It is well tested with 350
tests, including end-to-end data integrity tests.
6 They are not discrete-event simulations, even though the source code
contains data structures with name “event”.
7 Our simulator does show reasonable end-to-end performance.

the Varmail benchmark [2]. LevelDB is a popular NoSQL
database based on log-structured merge trees; log-structured
merge trees are designed to avoid random writes through
log structuring and occasional compaction and garbage col-
lection. Its periodic background compaction operations read
key-value pairs from multiple files and write them to new
files. RocksDB is based on LevelDB but optimizes its op-
erations for SSDs by (among other things) increasing the
concurrency of its compaction operations. SQLite is a pop-
ular B-tree based database widely used on mobile devices,
desktops and cloud servers. The default consistency imple-
mentation is roll-back journaling (hereafter refer to as RB),
in which a journal file, containing data before a transaction,
is frequently created and deleted. More recent versions of
SQLite also support write-ahead logging (hereafter referred
to as WAL), in which a log file is used to keep data to be
committed to the database. The WAL mode typically per-
forms less data flushing and more sequential writes. Varmail
is a benchmark that mimics the behavior of email servers
which append and read many small (tens of KBs) files using
16 threads. SSDs are often used to improve the performance
of such workloads.

Why are these applications chosen? Through these appli-
cations, we examine how well application designs comply
with the SSD contract in interesting ways. With the collec-
tion of databases, we can study the differences of access
patterns between essential data structures: B-tree and LSM-
Tree. We can also study the effectiveness of SSD optimiza-
tions by comparing LevelDB and RocksDB. Additionally,
we can investigate differences between mechanisms imple-
menting the same functionality – implementing data consis-
tency by Write-Ahead Logging and Roll Back journaling in
SQLite. Besides databases, we choose Varmail to represent
a large class of applications that operate on multiple files,
flush frequently, and request small data. These applications
perform poorly on HDDs and demand SSDs for high perfor-
mance. The applications that we chose cover a limited space
of the population of existing applications, but we believe that
our findings can be generalized and the tools we designed are
helpful in analyzing other applications.

What access patterns are studied? We study a variety
of usage patterns for each application. These patterns in-
clude sequential, random insertions and queries, as well as
their mix, for all database applications. Sequential and ran-
dom queries are conducted on sequentially and randomly in-
serted databases, respectively. LevelDB and RocksDB are
driven by their built-in benchmark db bench, using 16 byte
keys and 100 byte values. SQLite is driven by a simple mi-
crobenchmark that we developed to perform basic opera-
tions; we commit a transaction after every 10 operations.
The SQLite database has the same key and value sizes as
LevelDB and RocksDB. The exact number of operations (in-
sertions, updates or queries) performed on these database
applications depend on the goal of the experiment. For ex-

ample, to evaluate the Uniform Data Lifetime rule, we in-
sert and update key-value records for hundreds of millions
of times. For Varmail, we study small, large, and mixed (i.e.,
both small and large) collections of files, which reflect small,
large, and mixed email workloads on a single server. We
limit the memory usage of each application with Linux con-
trol groups [7] to avoid large cache effects.

What file systems are studied? We study two traditional
file systems (ext4 and XFS) and a newer one that is designed
for SSDs (F2FS), all on Linux 4.5.4. Both ext4 and XFS
are among the most mature and popular Linux file systems.
Although originally designed for HDDs, the fact that they
are stable and well-established has caused them to be widely
used for SSDs [1, 3]. F2FS (Flash-Friendly File System) is
a log-structured file system that is claimed to be optimized
for modern SSDs. F2FS is a part of the mainline Linux
kernel and is under active development. In our evaluation,
we enable discard (also known as trim) support for all file
systems, as suggested by some major cloud providers [1, 3].

How to evaluate rule violations? We evaluate how well
the contractors conform to each rule with the help of Wisc-
See. WiscSee automatically executes, traces and analyzes
combinations of applications and file systems. To examine
request scale and uniform data lifetime, WiscSee analyzes
the traces directly; for locality, aligned sequentiality, and
grouping by death time, WiscSee feeds the traces through
WiscSim as these items require understanding the internal
states of the SSD. The best metrics for evaluations are often
suggested by the rule. For example, to evaluate locality we
examine miss ratio curves [89, 90], whereas to understand
death time, we introduce a new metric, zombie curves.

We evaluate rules individually, which has several benefits.
First, it makes the analysis relevant to a wide spectrum of
FTLs. An FTL is sensitive to a subset of rules; understanding
each rule separately allows us to mix and match the rules
and understand new FTLs. Second, it prevents the effects of
rules from confounding each other. For example, analyzing a
workload on an FTL that is sensitive to two rules can make it
difficult to determine the source of performance degradation.

How to identify the root of a violation? Although WiscSee
shows the performance problems, it does not directly reveal
their root causes. However, using the hint from WiscSee, we
can find out their causes by examining the internals of ap-
plications, file systems, and the SSD simulator. Because the
source code of the applications, file systems and WiscSim
are all available, we can understand them by freely tracing
their behaviors or making experimental changes. For exam-
ple, with the information provided by applications and file
systems, we can investigate WiscSim and find the semantics
of garbage data, why the garbage data was generated, and
who is responsible.

leveldb rocksdb sqlite−rb sqlite−wal varmail

0
400
800

1200

0
400
800

1200

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

R
eq

ue
st

 S
iz

e
(K

B
)

ext4 f2fs xfs

(a) Request Size

leveldb rocksdb sqlite−rb sqlite−wal varmail

0
10
20
30

0
10
20
30

read
w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ix

N
C

Q
 D

ep
th

(b) NCQ Depth
Figure 3: Request Scale - Distributions of Request Size and NCQ Depth. Data of different applications is shown in columns.
The top (read) and bottom (write) panels show the read and write results, respectively; the X axis indicates I/O patterns. Inside
each panel, the top and bottom border of the box show the third and first quartile; the heavy lines in the middle indicate the
medians. The whiskers indicate roughly how far data points extend [13]. Note that Linux block layer splits requests if they
exceed a maximum size limit (1280 KB in our case) [8].

5. The Contractors
In this section, we present our observations based on ver-
tical analysis of applications, file systems, and FTLs. The
observations are categorized and labeled by their focuses.
Category App presents general behaviors and differences
across applications. Category FS presents general behaviors
and differences across file systems.

We will show, by analyzing how well each workload
conforms to or violates each rule of the contract, that we can
understand its performance characteristics. Additionally, by
vertical analysis of these applications and file systems with
FTLs, we hope to provide insights about their interactions
and shed light on future designs in these layers.

5.1 Request scale
We evaluate and pinpoint request scale violations from appli-
cations and file systems by analyzing block traces, which in-
clude the type (read, write, and discard), size, and time (issue
and completion) of each request. Since the trace is collected
using a small portion of a large SSD, the traced behaviors are
unlikely to be affected by SSD background activities, which
should occur at a negligible frequency.

Figure 3 shows the distributions of request sizes and NCQ
depths. As we can see from the figures, the request scale
varies significantly between different applications, as well as
file systems. The difference between traditional file systems
(i.e. ext4 and XFS) and log-structured file system (i.e. F2FS)
is often significant.

Observation #1 (App): Log structure increases the
scale of write size for applications, as expected. LevelDB
and RocksDB are both log-structured, generating larger
write requests than SQLiteRB, SQLiteWAL, and Varmail,
in which write requests are limited by transaction size (10
insertions of 116-byte key-value pairs) or flush size (average
16 KB). However, the often large write amplification intro-
duced by a log structure is harmful for SSDs [61]. We do not
discuss this issue here as we focus on SSD interface usage.

Observation #2 (App): The scale of read requests is of-
ten low. Unlike write requests, which can be buffered and

0
2
4
6

0
2
4
6

leveldb
rocksdb

0.000 0.025 0.050 0.075 0.100
Time (sec)

N
C

Q
 d

ep
th

Figure 4: Request Scale - NCQ Depths During Com-
paction. The lower data points are from read requests;
higher ones are from writes.

enlarged, the scale of read requests is harder to increase.
Small requests, such as the database entries used in our eval-
uation, cannot be batched or concurrently issued due to de-
pendencies. Users may need to query one key before another,
or the database may need to read an index before reading
data from the location given by the index. Figure 3a also
shows that LevelDB issues larger requests than RocksDB be-
cause RocksDB disables Linux’s default readahead behavior
so the OS cache contains only explicitly requested data.

Observation #3 (App): SSD-conscious optimizations
have room for improvements. Neither RocksDB, which
is optimized for SSDs, nor LevelDB is able to saturate
device resources. Figure 3b shows that RocksDB is only
able to use a few more NCQ slots than LevelDB, despite
RocksDB’s use of multi-threaded compaction to increase
SSD parallelism [14].8 We do see the number of writing
processes increase, but the write concurrency does not in-
crease and device bandwidth is underutilized (bandwidth
results are not shown). For example, Figure 4 shows a snip-
pet of NCQ depth over time on ext4 for compaction oper-
ations in LevelDB and RocksDB. RocksDB does not ap-
pear to use NCQ slots more efficiently than LevelDB during
compaction. One obvious optimization would be to perform
reads in parallel, as the figure shows that RocksDB reads
several files serially, indicated by the short spikes. The rela-

8 We have set the number of compaction threads to be 16.

tively higher queue depth shown in Figure 3b is due to higher
concurrency during flushing memory contents.

Observation #4 (App): Frequent data barriers in ap-
plications limit request scale. Data barriers are often
created by synchronous data-related system calls such as
fsync() and read(), which LevelDB, RocksDB, SQLite
and Varmail all frequently use. Since a barrier has to wait
for all previous requests to finish, the longest request wait
time determines the time between barriers. For example, the
writes in Figure 4 (higher depth) are sent to the SSD (by
fdatasync()) at the same time but complete at different
times. While waiting, the SSD bandwidth is wasted. As a
result, frequent application data barriers significantly reduce
the number of requests that can be concurrently issued. Al-
though the write data size between barriers in LevelDB and
RocksDB is about 2 MB on average (which is much larger
than the sizes of SQLiteRB, SQLiteWAL, and Varmail), bar-
riers still degrade performance. As Figure 4 shows, the write
and read barriers frequently drain the NCQ depth to 0, un-
derutilizing the SSD.

Observation #5 (FS): Linux buffered I/O implemen-
tation limits request scale. Even though LevelDB and
RocksDB read 2 MB files during compactions, which are
relatively large reads, their request scales to the SSD are
still small. In addition to previously mentioned reasons, the
request scale is small because the LevelDB compaction, as
well as the RocksDB compaction from the first to the second
level (“the only compaction running in the system most of
the time” [15]), are single-threaded and use buffered reads.

The Linux buffered read implementation splits and se-
rializes requests before sending to the block layer and
subsequently the SSD. If buffered read() is used, Linux
will form requests of read ahead kb (default: 128) KB,
send them to the block layer and wait for data one at a
time. If buffered mmap() is used, a request, which is up
to read ahead kb KB, is sent to the block layer only when
the application thread reads a memory address that triggers
a page fault. In both buffered read() and mmap(), only a
small request is sent to the SSD at a time, which cannot ex-
ploit the full capability of the SSD. In contrast to buffered
reads, direct I/O produces much larger request scale. The di-
rect I/O implementation sends application requests in whole
to the block layer. Then, the block layer splits the large re-
quests into smaller ones and sends them asynchronously to
the SSD.

Application developers may think reading 2 MB of data is
large enough and should achieve high performance on SSDs.
Surprisingly, the performance is low because the request
scale is limited by a seemingly irrelevant setting for reada-
head. To mitigate the problem, one may set read ahead kb

to a higher value. However, such setting may force other ap-
plications to unnecessarily read more data. In addition, the
request to the block layer is limited up to a hard-coded size
(2 MB), to avoid pinning too much memory on less capa-

leveldb rocksdb sqlite−rb sqlite−wal varmail

0.0
0.1
0.2
0.3 w

rite

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

se
q

ra
nd m
ix

sm
al

l
la

rg
e

m
ixD

is
ca

rd
 R

at
io

ext4 f2fs xfs

Figure 5: Request Scale - Ratio of Discard Operations.
The discard ratios of read workloads are not shown because
they issue a negligible number of discards (or none at all).

ble machines. We believe this size should be tunable so that
one can achieve larger request scale on more capable ma-
chines and storage devices. Other ways to avoid the buffered
read problem include reading by multiple threads or by small
asynchronous I/Os. However, these approaches unnecessar-
ily complicate programming. We believe that the Linux I/O
path should be re-examined to find and fix similar problems
when we transit from the HDD to the SSD era.

Observation #6 (FS): Frequent data barriers in file sys-
tems limit request scale. File systems also issue barriers,
which are often caused by applications and affect all data in
the file system [39, 77]. Journaling in ext4 and XFS, often
triggered by data flushing, is a frequent cause of barriers.
Checkpointing in F2FS, which is often triggered by fsync-
ing directories for consistency in LevelDB, RocksDB, and
SQLiteRB, suspends all operations. Barriers in file systems,
as well as in applications (Observation 4), limit the benefit
of multi-process/thread data access.

Observation #7 (FS): File system log structuring frag-
ments application data structures. F2FS issues smaller
reads and unnecessarily uses more NCQ slots than ext4 and
XFS for sequential queries of SQLiteRB and SQLiteWAL.
This performance problem arises because F2FS breaks the
assumption made by SQLiteRB and SQLiteWAL that file
systems keep the B-tree format intact. For SQLiteRB, F2FS
appends both the database data and the database journal
to the same log in an interleaved fashion, which fragments
the database. For SQLiteWAL, F2FS also breaks the B-tree
structure, because F2FS is log-structured, causing file data
layout in logical space to depend on the time of writing,
not its offset in the file. Due to the broken B-tree structure,
F2FS has to read discontiguous small pieces to serve sequen-
tial queries, unnecessarily occupying more NCQ slots, while
ext4 and XFS can read from their more intact B-tree files.

When the number of available NCQ slots is limited or
the number of running applications is large, workloads that
require more NCQ slots are more likely to occupy all slots,
causing congestion at the SSD interface. In addition, for the
same amount of data, the increased number of requests incur
more per-request overhead.

Observation #8 (FS): Delaying and merging slow non-
data operations could boost immediate performance. Non-
data discard operations occupy SSD resources, including
NCQ slots, and therefore can reduce the scale of more

leveldb
read

leveldb
write

rocksdb
read

rocksdb
write

sqlite−rb
read

sqlite−rb
write

sqlite−wal
read

sqlite−wal
write

varmail
read

varmail
write

0.0
0.2
0.4

0.0
0.2
0.4

0.0
0.2
0.4

seq/S
rand/L

m
ix

0.
01

0.
05 0.

1
0.

5 1
0.

01
0.

05 0.
1

0.
5 1

0.
01

0.
05 0.

1
0.

5 1
0.

01
0.

05 0.
1

0.
5 1

0.
01

0.
05 0.

1
0.

5 1
0.

01
0.

05 0.
1

0.
5 1

0.
01

0.
05 0.

1
0.

5 1
0.

01
0.

05 0.
1

0.
5 1

0.
01

0.
05 0.

1
0.

5 1
0.

01
0.

05 0.
1

0.
5 1

Cache Coverage

M
is

s
R

at
io

ext4 f2fs xfs

Figure 6: Locality - Miss Ratio Curves. We set the cache to cover 1%, 5%, 10%, 50%, and 100% of the logical space. seq/S
indicates sequential for databases and small set of files for Varmail. rand/L indicates random for databases and large set of
files for Varmail.

immediately-valuable read and write operations. We present
the ratio of discard operations to all operations for all write
workloads in Figure 5. As we can see, ext4 and XFS often is-
sue more discard requests than F2FS, because ext4 and XFS
both immediately discard the logical space of a file when it is
deleted. SQLiteWAL reuses its write-ahead log file instead
of deleting it and thus incurs very few discard operations. On
the other hand, SQLiteRB and Varmail frequently create and
delete small files, leading to many small discard operations.
Such behavior may lead to severe performance degradation
on SSDs that do not handle discard operations quickly (a
common problem in modern SSDs [22, 52]). In contrast to
ext4 and XFS, F2FS attempts to delay and merge discard op-
erations, which boosts immediate performance by reducing
the frequency and increasing the size of discard operations.
However, later we will show that this (sometimes infinite)
delay in performing discards can significantly degrade sus-
tainable performance.

5.2 Locality
We study locality by examining miss ratio curves [89, 90],
obtained from WiscSim with an on-demand page-level map-
ping scheme based on DFTL [48]. We revise the cache re-
placement policy of the mapping scheme to be aware of spa-
tial locality, as it is a common and important attribute of
many workloads [43, 89, 90]. In this FTL, one translation
page contains entries that cover 1 MB of contiguous logical
space. Our replacement policy prefers to evict clean entries
rather than dirty ones. Our locality study here is applicable in
general, as locality is a valuable property in storage systems.

Figure 6 presents the miss ratios curves. Columns indi-
cate different combinations of applications and read/write
modes. For example, leveldb.read and level.write in-
dicate LevelDB query and insertion workloads, respectively.
Rows indicate workload I/O patterns. The x-axis shows the
fractions of logical space that can be covered by the differ-
ent cache sizes. Intuitively, small and distant requests tend to
have poor locality and thus higher miss ratios. As we can see
for writes, log-structured applications (LevelDB, RocksDB,
and SQLiteWAL) have better locality than others, as log-

structured writing produces a more sequential I/O pattern.
Read locality, on the other hand, is highly dependent on the
pattern of requests.

Observation #9 (App): SSDs demand aggressive and
accurate prefetching. RocksDB queries (rocksdb.read)
experience much higher miss ratios than LevelDB, because
RocksDB disables Linux’s readahead and thus issues much
smaller requests (as discussed in Section 5.1). The high miss
ratio, as well as low request scale, leads to low utilization
of the SSD. On the other hand, LevelDB enables readahead,
which naively prefetches data nearby; the prefetched data
could go unused and unnecessarily occupy host memory. We
believe that, with powerful SSDs, aggressive and accurate
prefetching should be used to boost SSD utilization and
application performance.

Observation #10 (FS): Aggressively reusing space im-
proves locality. XFS achieves the best locality on all work-
loads, because XFS aggressively reuses space from deleted
files by always searching free space from the beginning of
a large region (XFS allocation group). In contrast, other
file systems delay reuse. F2FS delays discarding space of
deleted files (Observation 8) and therefore delays their reuse;
ext4 prefers to allocate new space near recent allocated
space, which implicitly avoids immediate space reuses.

Observation #11 (FS): Legacy policies could break lo-
cality. For the Varmail write workload, ext4 has much
higher miss ratios than XFS and F2FS, because (ironically)
an allocation policy called Locality Grouping breaks local-
ity. Locality grouping was originally designed to optimize
small file handling for HDDs by storing them in globally
shared preallocated regions to avoid long seeks between
small files [27, 51]. However, the small writes of Varmail
in fact spread across a large area and increase cache misses.
Data is spread for several reasons. First, ext4 pre-allocates
a group of 2 MB regions (a locality group) for each core
repeatedly as they are filled. Second, the large number of
CPU cores in modern machines lead to a large number of
locality groups. Third, writes can go to any place within
the locality groups depending on which core performs the

write. The combination of these factors leads to small and
scattered write requests for ext4 running Varmail. Similarly
to Varmail, SQLiteRB read, which also frequently creates
and deletes files, suffers slightly degraded performance as a
result of locality grouping.

Observation #12 (FS): Log structuring is not always
log-structured. For the Varmail write workload, F2FS of-
ten suffers from larger miss ratios than XFS, despite its log-
structured design which should lead to good spatial local-
ity and thus very low miss ratios. F2FS has high miss ratios
because it frequently switches to a special mode called in-
place-update mode, which issues many small, random writes
over a large portion of the device. The reason for F2FS to
switch to in-place-update mode is to reduce the metadata
overhead of keeping track of new blocks. In-place-update
mode is triggered if the following two conditions are sat-
isfied. First, flush size must be less than 32 KB. Second,
the workload must be overwriting data. Surprisingly, despite
its append-only nature, Varmail still triggers F2FS’s in-place
update. It satisfies the first condition easily, because it flushes
data in random small quantities (16 KB on average). More
subtly, while Varmail is only appending to each file, if the
previous append to the file only partially occupies its last
sector (4 KB), the current append operation will read, mod-
ify and overwrite the last sector of the file, satisfying the
second condition. We call such behavior partial sector use.
Because the two conditions are satisfied, partial sector use in
Varmail triggers in-place-update mode of F2FS, which re-
sults in small, scattered write requests among many previ-
ously written files. It is easy to see how such behavior can
also break the Aligned Sequentiality rule, which we will dis-
cuss in Section 5.3. Note that SQLite can also incur partial
sector use since its default operation unit size is 1 KB. 9

Observation #13 (FS): Log structuring can spread data
widely across a device and thus reduce locality. F2FS has
the highest miss ratios for most SQLiteRB and SQLiteWAL
query workload. This poor cache performance arises be-
cause F2FS spreads database data across logical space as it
appends data to its log and it breaks the B-tree structure of
SQLite, as we have mentioned in Section 5.1.

5.3 Aligned Sequentiality
We study aligned sequentiality by examining the unaligned
ratio, which is the ratio of the size of data in the SSD with
misaligned mappings (see Figure 1) to total application file
size. The data pages with misaligned mapping are potential
victims of expensive merging. The unaligned ratio is ob-
tained using a hybrid mapping scheme [74] in WiscSim. Re-
quests are not striped across channels in our multi-channel
implementation of this scheme as striping immediately frag-
ments mappings.

9 Beginning with SQLite version 3.12.0 (2016-03-29), the default unit size
has been increased to 4 KB.

leveldb rocksdb sqlite−rb sqlite−wal varmail
88

2525

1212

12

6

55

55

6 6

0
1
2

0
1
2

0
1
2

seq/S
rand/L

m
ix

ex
t4

f2
fs xf
s

ex
t4

f2
fs xf
s

ex
t4

f2
fs xf
s

ex
t4

f2
fs xf
s

ex
t4

f2
fs xf
s

U
na

lig
ne

d
R

at
io

128 KB 1 MB

Figure 7: Aligned Sequentiality - Unaligned Ratios. The
dashed line indicates unaligned ratio of 1.0: the SSD inter-
nally has the same amount of data with unaligned mapping
as the amount of application file data. Different colors indi-
cate different block sizes.

Flash block size is an important factor that affects aligned
sequentiality. If the block size is large, logical writes must
be aligned and sequential in a wider logical area in order to
maintain logical-to-physical address alignment. Therefore,
smaller block sizes make an SSD less sensitive to alignment.
Unfortunately, block sizes tend to be large [20, 21]. We
analyze different block sizes to understand how it impacts
different combinations of applications and file systems.

Figure 7 shows the unaligned ratios of different combina-
tions of applications, I/O patterns, file systems and block
sizes. Read workloads do not create new data mappings
and thus are not shown. As we can see, applications with
large log-structured files (LevelDB and RocksDB) often
have lower unaligned ratios than other applications. In addi-
tion, unaligned ratios can be greater than 1, indicating that
there is more unaligned data inside the SSD than the appli-
cation file data. The figure also shows that larger block sizes
lead to higher unaligned rations.

Observation #14 (App): Application log structuring
does not guarantee alignment. The log-structured LevelDB
and RocksDB can also have high unaligned ratios, de-
spite writing their files sequentially. On ext4 and XFS, the
misalignment comes from aggressive reuse of space from
deleted files, which can cause the file system to partially
overwrite a region that is mapped to a flash block and break
the aligned mapping for that block. F2FS often has smaller
unaligned ratios than ext4 and XFS because it prefers to use
clean F2FS segments that contain no valid data, where F2FS
can write sequentially; however, there is still misalignment
because if a clean F2FS segment is not available, F2FS trig-
gers threaded logging (filling holes in dirty segments).

Observation #15 (FS): Log-structured file systems may
not be as sequential as commonly expected. Except for se-
quential insertion (seq/S) on SQLiteWAL, both SQLiteRB
and SQLiteWAL have very high unaligned ratios on F2FS,
which is supposed to be low [62]. For SQLiteRB, F2FS sees
high unaligned ratios for two reasons. First, in every transac-
tion, SQLiteRB overwrites the small journal file header and

leveldb
n

leveldb
s

rocksdb
n

rocksdb
s

sqlite−rb
n

sqlite−rb
s

sqlite−wal
n

sqlite−wal
s

varmail
n

varmail
s

0

1

0

1

0

1

seq/S
rand/L

m
ix

0 1 0 1 0 1 0 1 0 1 2 3 0 1 2 0 1 2 0 1 0 1 0 1
Cumulative Block Space

Va
lid

 R
at

io

ext4
f2fs
xfs

Figure 8: Grouping by Death Time - Zombie Curves (Stable Valid Ratios). A zombie curve shows the sorted non-zero valid
ratios of blocks. Labels ‘n’ and ‘s’ indicate non-segmented and segmented FTLs, respectively. The x-axis is normalized to
logical space size. Zombie curves show important usage characteristics of SSDs. A curve that is much shorter than 1 on x-axis
indicates that only a small portion of blocks are occupied (i.e., fully or partially valid); a curve reaches beyond 1 on x-axis
indicates that the total size of occupied blocks is larger than the logical space size (some over-provisioned blocks are occupied).
The area size under a curve is the size of valid data in proportion to the logical space size. An under-curve area with size close
to 0 (e.g., sqlite-wal with seq/S on ext4) indicates a small amount of valid data in the simulated SSD; an under-curve area with
size close to 1 (e.g., Varmail on F2FS) suggests that almost all the data on logical space is considered valid by the SSD.

a small amount of data inside the database file. Both cases
trigger in-place updates, which break sequentiality. Second,
the FTL has to keep a large amount of ghost data that is
deleted by the application but not discarded by the file sys-
tem, which is one of the major reasons that unaligned ratio
can be greater than 1. Ghost data is produced because F2FS
delays discard operations until an F2FS segment (2 MB)
contains no valid application data and thus becomes “clean”.
However, SQLiteRB’s valid data is spread across many seg-
ments, which are considered “dirty” by F2FS. F2FS does
not clean these dirty segments as it would interfere with cur-
rent application traffic. Thus, many segments are not dis-
carded, leaving a large amount of ghost data. The write pat-
tern of SQLiteWAL is different, however. The combination
of SQLiteWAL and F2FS violates aligned sequentiality be-
cause merging data from the write-ahead log to the database
also incurs small discrete updates of the database file, trig-
gering in-place updates in F2FS; it also has a large amount of
unaligned ghost data due to the delayed discarding of dirty
F2FS segments.

Observation #16 (FS): sequential + sequential 6= se-
quential. Surprisingly, the append-only Varmail with log-
structured F2FS produces non-sequential writes and has high
unaligned ratios. This non-sequentiality is caused by partial-
sector usage (discussed in Section 5.2) which triggers F2FS
in-place update mode, and F2FS produces ghost data from
delayed discards. Varmail has high unaligned ratios on ext4
and XFS as it appends to random small files.

5.4 Grouping by Death Time
We introduce zombie curve analysis to study Grouping By
Death Time. We set the space over-provisioning of WiscSim
to be infinitely large and ran workloads on it for a long time.
While running, we periodically take a snapshot of the valid
ratios of the used flash blocks, which is the ratio of valid
pages to all pages inside a block. The valid ratios provide
useful information about zombie (partially valid) blocks,

which are the major contributors to SSD garbage collection
overhead. We find that the distribution of valid ratios quickly
reaches a stable state. The zombie curve formed by stable
sorted valid ratios can be used to study how well each file
system groups data by death time. The WiscSim FTL used
for this study is based on DFTL [48], with added support for
logical space segmentation and multiple channels.

Figure 8 presents the zombie curve for each workload.
An ideally grouped workload would be shown as a verti-
cal cliff, indicating zero zombie blocks. In such a case, the
garbage collector can simply erase and reuse blocks without
moving any data. A workload that grossly violates grouping
by death time has a curve with a large and long tail, which
is more likely to incur data movement during garbage col-
lection. This large and long tail arises because garbage col-
lection must move the data in zombie blocks to make free
space if available flash space is limited. Analysis by zombie
curves is generally applicable because it is independent of
any particular garbage collection algorithm or parameter.

Observation #17 (App): Application log structuring
does not reduce garbage collection. It has long been be-
lieved that application-level log structure reduces garbage
collection, but it does not. As shown in Figure 8, LevelDB
and RocksDB have large tails (gradual slopes), especially
for rand/L and mix patterns. Sequential writes within in-
dividual files, which are enabled by log structuring, do not
reduce garbage collection overhead as indicated by the zom-
bie curves.

The fundamental requirement to reduce garbage collec-
tion overhead is to group data by death time, which both
LevelDB and RocksDB do not satisfy. First, both LevelDB
and RocksDB have many files that die at different times be-
cause compactions delete files at unpredictable times. Sec-
ond, data of different files are often mixed in the same block.
When LevelDB and RocksDB flush a file (about 2 MB), the
file data will be striped across many channels to exploit the
internal parallelism of the SSD [34]. Since each block re-

ceives a small piece of a file, data from multiple files will be
mixed in the same flash block. Our 128-KB block in the sim-
ulation may mix data from two files since the 2-MB file data
is striped across 16 channels and each channel receives 128
KB of data, which may land on two blocks. As blocks are of-
ten bigger in modern SSDs, more files are likely to be mixed
together. Third, files flushed together by foreground inser-
tions (from memory to files) and background compactions
are also mixed in the same block, because the large applica-
tion flush is split into smaller ones and sent to the SSD in a
mixed fashion by the Linux block layer.

Another problem of LevelDB and RocksDB is that they
both keep ghost data, which increases garbage collection
overhead. Even if users of LevelDB and RocksDB delete
or overwrite a key-value pair, the pair (i.e., ghost data) can
still exist in a file for a long time until the compaction
process removes it. Such ghost data increases the tail size
of a zombie curve and the burden of garbage collection.

Observation #18 (FS): Applications often separate data
of different death time and file systems mix them. Both
ext4 and XFS have thin long tails for SQLiteRB and SQLite-
WAL. These long tails occur because ext4 and XFS mix
database data with the database journal and write-ahead log
for SQLiteRB and SQLiteWAL, respectively. Since database
journal and write-ahead log die sooner than the database
data, only the database data is left valid in zombie blocks.
Note that our experiments involve only up to two SQLite in-
stances. Production systems running many instances could
end up with a fat, long tail.

Observation #19 (FS): All file systems typically have
shorter tails with segmented FTLs than they have with
non-segmented FTLs, suggesting that FTLs should always
be segmented. Segmentation in logical space enables group-
ing by space. Since file systems often place different types of
data to different locations, segmentation is often beneficial.
The longer tail of non-segmented FTL is due to mixing more
data of different death times, such as application data and the
file system journal. The difference between segmented and
non-segmented FTLs are most visible with SQLiteRB.

Observation #20 (FS): All file systems fail to group
data from different directories to prevent them from be-
ing mixed in the SSD. Data belonging to different users
or application instances, which are often stored in different
file system directories, usually have different death times.
For example, one database may be populated with long-lived
data while another is populated with short-lived data. Linux
ext4 fails to group data from different directories because
its locality group design (Section 5.2) mixes all small files (
64 KB) and its stream optimization appends chunks of large
files (> 64KB) next to each other (stream optimization was
originally designed to avoid long seeks while streaming mul-
tiple files on HDDs) [51]. XFS groups data from different
directories in different regions, known as allocation groups.
However, data from different directories may still end up

leveldb rocksdb sqlite−rb sqlite−wal varmail

1e+01
1e+03
1e+05
1e+07

1e+01
1e+03
1e+05
1e+07

1e+01
1e+03
1e+05
1e+07

seq/S
rand/L

m
ix

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Used Logical Space (normalized)

C
ou

nt

ext4 f2fs xfs

Figure 9: Uniform Data Lifetime - Sorted Write Count of
Logical Pages. Y axis scale is logarithmic; pages without
data are excluded.

mixed when allocation groups overflow or XFS runs out of
empty allocation groups. F2FS tries to isolate different types
of data, such as file data, file inodes, directory entries, and
directory inodes. Unfortunately, F2FS mixes data from all
files (except files with a few specific extensions such as mp3)
written to the file system into a single log regardless of their
parent directories, grossly violating grouping by death time.

Observation #21 (FS): F2FS sacrifices too much sus-
tainable performance for immediate performance. F2FS
exhibits a much larger tail than ext4 and XFS for SQLiteRB,
SQLiteWAL, Varmail, and non-sequential patterns of LevelDB
and RocksDB. This poor behaviors materializes because
F2FS delays discards, sometimes infinitely, of data that is
already overwritten or deleted by applications, whereas ext4
and XFS discard them immediately, as discussed in Sec-
tion 5.1 and 5.3. We determine that F2FS sacrifices sus-
tainable performance for immediate performance because
the un-discarded data becomes ghost data which produces a
large number of zombie blocks and increases garbage collec-
tion overhead. The large amount of zombie blocks makes the
pair of SQLiteRB and F2FS very sensitive to SSD garbage
collection capabilities. On SSDs with fast discard operations
this trade-off could be counterproductive, because it may not
improve immediate performance but could degrade sustain-
able performance significantly.
5.5 Uniform Data Lifetime
The uniform data lifetime rule is for reducing flash cell pro-
gram/erase variance and wear-leveling cost. The exact cost
of wear-leveling varies significantly between different al-
gorithms and architectures [30, 55, 72]. Data lifetime vari-
ance is the fundamental source of program/erase variance
and wear-leveling cost.

We use the write count of logical pages to estimate data
lifetime. The lifetime of a piece of data starts when it is
written to a logical page address, and ends when the physical
page address is discarded or overwritten by new data. If
one logical page address has many more writes than another
during the same time period, the data written on the former

logical page address has much shorter lifetime than the later
on average. Therefore, a higher write count on a logical page
address indicates that the address is written with data of
shorter lifetime and with more data.

Since program/erase variance is a long-term effect, we
run our applications much longer to gather statistics. Each
combination of application and file system generates at least
50 times and up to 800 times more data traffic than the log-
ical capacity. Based on our analysis, we believe our results
are representative even for much larger traffic sizes.

In Figure 9, we show the logical space write count of
different combinations of applications and file systems. For
ease of comparison, the x-axis (logical pages) is sorted by
write count and normalized to the written area. Ideally, the
curve should be flat. We can see that log-structured appli-
cations are more robust than others across different file sys-
tems. Also, small portions of the logical space tend to be
written at vastly higher or lower frequencies than the rest.

Observation #22 (FS): Application and file system data
lifetimes differ significantly. The write counts of applica-
tion data and the file system journal often vary significantly.
For example, when running SQLiteWAL (rand/L) on XFS,
the database data is written 20 times more than the jour-
nal on average (the flat line on the right side of the curve
is the journal). In addition, when running Varmail (rand/L)
on ext4, the journal is on average written 23 times more than
Varmail data. The most frequently written data (the journal
superblock) is written 2600 times more than average Varmail
data. Such a difference can lead to significant variance in
flash cell wear.

F2FS shows high peaks on LevelDB, RocksDB, and
SQLiteRB, which is due to F2FS checkpointing. F2FS con-
ducts checkpointing, which writes to fixed locations (check-
point segment, segment information table, etc.), when appli-
cations call fsync on directories. Since LevelDB, RocksDB
and SQLiteRB call fsync on directories for crash consis-
tency, they frequently trigger F2FS checkpointing, which
writes to fixed locations. Such high peaks are particularly
harmful because the large amount of short-lived traffic fre-
quently programs and erases a small set of blocks, while
most blocks are held by the long-lived data.

Observation #23 (FS): All file systems have allocation
biases. Both ext4 and XFS prefer to allocate logical space
from low to high addresses due to their implementations of
space search. F2FS prefers to put user data at the beginning
of logical space and node data (e.g. inode, directory entries)
at the end. These biases could lead to significant lifetime
differences. For example, on Varmail (seq/S) ext4 touches
a large area but also prefers to allocate from low addresses,
incurring significant data lifetime variance.

Observation #24 (FS): In-place-update file systems pre-
serve data lifetime of applications. Both ext4 and XFS show
high peaks with SQLiteRB and SQLiteWAL because SQLite
creates data of different lifetimes and both file systems pre-

serve it. The high peak of SQLiteRB is due to overwrit-
ing the database header on every transaction. For SQLite-
WAL, the high peak is due to repeatedly overwriting the
write-ahead log. The large portion of ext4 logical space with
low write count is the inode table, which is initialized and
not written again for this workload (sqlite-wal column).
The inode table of SQLiteRB is also only written once, but
it accounts for a much smaller portion because SQLiteRB
touches more logical space (as discussed in Section 5.2).

5.6 Discussion
By analyzing the interactions between applications, file sys-
tems and FTLs, we have learned the following lessons.

Being friendly to one rule is not enough: the SSD contract
is multi-dimensional. Log-structured file systems such as
F2FS are not a silver bullet. Although pure log-structured file
systems conform to the aligned sequentiality rule well, it suf-
fers from other drawbacks. First, it breaks apart application
data structures, such as SQLite’s B-tree structure, and thus
breaks optimizations based on the structures. Second, log-
structured file systems usually mix data of different death
times and generate ghost data, making garbage collection
very costly.

Although not perfect, traditional file systems still per-
form well upon SSDs. Traditional file systems have HDD-
oriented optimizations that can violate the SSD contract.
For example, locality grouping and stream optimization in
ext4 were designed to avoid long seeks. Unfortunately, they
now violate the grouping by death time rule of the SSD
contract as we have shown. However, these traditional file
systems continue to work well on SSDs, often better than the
log-structured F2FS. This surprising result occurs because
the HDD unwritten contract shares some similarity with the
SSD contract. For example, HDDs also require large re-
quests and strong locality to achieve good performance.

The complex interactions between applications, file sys-
tems, and FTLs demand tooling for analysis. There are
countless applications and dozens of file systems, all of
which behave differently with different inputs or configu-
rations. The interactions between layers are often difficult to
understand and we have often found them surprising. For ex-
ample, running append-only Varmail on log-structured F2FS
produces non-sequential patterns. To help deal with the di-
versity and complexity of applications and file systems, we
provide an easy-to-use toolkit, WiscSee, to simplify the ex-
amination of arbitrary workloads and aid in understanding
the performance robustness of applications and file systems
on different SSDs. Practically, WiscSee could also be used to
find the appropriate provisioning ratio before deployment,
using visualizations such as the zombie curves.

Myths spread if the unwritten contract is not clarified.
Random writes are often considered harmful for SSDs be-
cause they are believed to increase garbage collection over-
head [31, 33, 62, 71]. As a result, pessimistic views have

spread and systems are built or optimized based on this as-
sumption [14, 24, 32, 60].

We advocate an optimistic view for random writes. Ran-
dom writes often show low sustainable performance because
benchmarks spread writes across a large portion of the log-
ical space without discarding them and effectively create
a large amount of valid data without grouping by death
time [31, 58, 78], which would show as a large tail in our
zombie curve. However, random writes can perform well
as long as they produce a good zombie curve so that SSDs
do not need to move data before reusing a flash block. For
example, random writes perform well if they spread only
across a small logical region, or data that is randomly writ-
ten together is discarded together to comply with the rule
of grouping by death time. Essentially, write randomness is
not correlated with the rule of grouping by death time and
garbage collection overhead.

Sequential writes, often enabled by log structure, are be-
lieved to reduce garbage collection overhead inside SSDs.
Sequential writes across a large logical space, as often pro-
duced by benchmarks, show high sustainable performance
because data that is written together will be later overwrit-
ten at the same time, implicitly complying with the rule
of grouping by death time. However, as we have observed,
log-structured writes in applications such as LevelDB and
RocksDB often do not turn into repeated sequential writes
across a large logical space, but sporadic sequential writes
(often 2 MB) at different locations with data that die at dif-
ferent times. These writes violate the rule of grouping by
death time and do not help garbage collection. In addition,
log-structured file systems, such as F2FS, may not produce
large sequential writes as we have often observed.

We advocate dropping the terms “random write” and
“sequential write” for discussing SSD workloads regard-
ing garbage collections. Instead, one should study death
time and use zombie curves as a graphic tool to charac-
terize workloads. The terms “random” and “sequential” are
fine for HDDs as HDD performance is impacted only by the
characteristic of two consecutive accesses [82]. However,
SSDs are very different as their performance relies also on
accesses that are long before the most recent ones. Such out-
of-date and overly simplified terms bring misconceptions
and suboptimal system designs for SSDs.

6. Related Work
Our paper uncovers the unwritten contract of SSDs and ana-
lyzes application and file system behaviors with the contract.
We believe it is novel in several aspects.

Previous work often offers incomplete pictures of SSD
performance [31, 58, 62, 71]. A recent study by Yadgar et
al. [92] analyzes multiple aspects of SSD performance such
as spatial locality, but omits critical components such as the
concurrency of requests. The study by Lee et al. evaluates
only the immediate performance of F2FS and real applica-
tions, but neglects sustainable performance problems [62].

Our investigation analyzes five dimensions of the SSD con-
tract for both immediate and sustainable performance, pro-
viding a more complete view of SSD performance.

Previous studies fail to connect applications, file systems
and FTLs. Studies using existing block traces [48, 54, 95],
including the recent study by Yadgar et al. [92], cannot rea-
son about the behaviors of applications and file systems be-
cause the semantics of the data is lost and it is impossible
to re-create the same environment for further investigation.
Another problem of such traces is that they are not appro-
priate for SSD related studies, because they were collected
in old HDD environments which are optimized for HDDs.
Studies that evaluate applications and file systems on black-
box SSDs [59, 62] cannot accurately link the application and
file system to hidden internal behaviors of the SSD. In ad-
dition, studies that benchmark black-box SSDs [31, 34] or
SSD simulators [49] provide few insights about applications
and file systems, which can use SSDs in surprising ways. In
contrast, we conduct full-stack analysis with diverse appli-
cations, file systems, and a fully functioning modern SSD
simulator, which allows us to investigate not only what hap-
pened, but why it happened.

7. Conclusions
Due to the sophisticated nature of modern FTLs, SSD per-
formance is a complex subject. To better understand SSD
performance, we formalize the rules that SSD clients need to
follow and evaluate how well four applications (one with two
configurations) and three file systems (two traditional and
one flash-friendly) conform to these rules on a full-function
SSD simulator that we have developed. This simulation-
based analysis allows us to not only pinpoint rule violations,
but also the root causes in all layers, including the SSD itself.
We have found multiple rule violations in applications, file
systems, and from the interactions between them. We believe
our analysis here can shed light on design and optimization
across applications, file systems and FTLs, and the tool we
have developed could benefit future SSD workload analysis.

Acknowledgments
We thank the anonymous reviewers, Ant Rowstron (our
shepherd), Joel Dedrick and Eunji Lee for their insightful
comments. We thank the members of the ADSL for their
valuable discussions. This material was supported by fund-
ing from Microsoft Jim Gray Systems Lab, NSF grants
CNS-1419199, CNS-1421033, CNS-1319405, and CNS-
1218405, DOE grant DE-SC0014935, as well as donations
from EMC, Facebook, Google, Huawei, NetApp, Samsung,
Seagate, Veritas, and VMware. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and may not reflect the views of
NSF, DOE, or other institutions.

References
[1] Amazon Web Service SSD Instance Store Volumes.

http://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/ssd-instance-store.html.

[2] Filebench. https://github.com/filebench/
filebench.

[3] Google Cloud Platform: Adding Local SSDs. https://
cloud.google.com/compute/docs/disks/local-ssd.

[4] Intel DC3500 Data Center SSD. http://www.intel.
com/content/www/us/en/solid-state-drives/
solid-state-drives-dc-s3500-series.html.

[5] Intel SSD X25-M Series. http://www.intel.com/
content/www/us/en/support/solid-state-drives/
legacy-consumer-ssds/intel-ssd-x25-m-series.
html.

[6] LevelDB. https://github.com/google/leveldb.

[7] Linux Control Group. https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt.

[8] Linux Generic Block Layer. https://www.kernel.org/
doc/Documentation/block/biodoc.txt.

[9] Micron 3D NAND Status Update. http:
//www.anandtech.com/show/10028/
micron-3d-nand-status-update.

[10] Micron NAND Flash Datasheets. https://www.micron.
com/products/nand-flash.

[11] Micron Technical Note: Design and Use Considerations
for NAND Flash Memory. https://www.micron.com/

~/media/documents/products/technical-note/
nand-flash/tn2917.pdf.

[12] NVMe Specification. http://www.nvmexpress.org/.

[13] R Manual: Box Plot Statistics. http://stat.ethz.ch/
R-manual/R-devel/RHOME/library/grDevices/html/
boxplot.stats.html.

[14] RocksDB. https://rocksdb.org.

[15] RocksDB Tuning Guide. https://github.com/
facebook/rocksdb/wiki/RocksDB-Tuning-Guide.

[16] Samsung K9XXG08UXA Flash Datasheet. http://www.
samsung.com/semiconductor/.

[17] Samsung V-NAND technology white paper. http:
//www.samsung.com/us/business/oem-solutions/
pdfs/V-NAND_technology_WP.pdf.

[18] Sqlite. https://sqlite.org.

[19] Technical Commitee T10. http://t10.org.

[20] Technical Note (TN-29-07): Small-Block vs. Large-Block
NAND Flash Devices. https://www.micron.com/

~/media/documents/products/technical-note/
nand-flash/tn2907.pdf/.

[21] Toshiba Semiconductor Catalog Mar. 2016. https:
//toshiba.semicon-storage.com/info/docget.jsp?
did=12587.

[22] fstrim manual page. http://man7.org/linux/
man-pages/man8/fstrim.8.html.

[23] White Paper of Samsung Solid State Drive Tur-
boWrite Technology. http://www.samsung.com/hu/
business-images/resource/white-paper/2014/01/
Whitepaper-Samsung_SSD_TurboWrite-0.pdf.

[24] Wikipedia: write amplification. https://en.wikipedia.
org/wiki/Write_amplification.

[25] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S.
Manasse, and R. Panigrahy. Design Tradeoffs for SSD Perfor-
mance. In Proceedings of the USENIX Annual Technical Con-
ference (USENIX ’08), pages 57–70, Boston, Massachusetts,
June 2008.

[26] A. R. Alameldeen and D. A. Wood. Variability in Archi-
tectural Simulations of Multi-threaded Workloads. In Pro-
ceedings of the 9th International Symposium on High Perfor-
mance Computer Architecture (HPCA-11), Anaheim, Califor-
nia, February 2003.

[27] K. Aneesh Kumar, M. Cao, J. R. Santos, and A. Dilger. Ext4
block and Inode Allocator Improvements. In Ottawa Linux
Symposium (OLS ’08), volume 1, pages 263–274, Ottawa,
Canada, July 2008.

[28] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating
Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.91
edition, May 2015.

[29] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An Analysis of
Data Corruption in the Storage Stack. In Proceedings of the
6th USENIX Conference on File and Storage Technologies
(FAST ’08), San Jose, California, February 2008.

[30] S. Boboila and P. Desnoyers. Write Endurance in Flash
Drives: Measurements and Analysis. In Proceedings of the 8th
USENIX Symposium on File and Storage Technologies (FAST
’10), San Jose, California, February 2010.

[31] L. Bouganim, B. T. Jónsson, P. Bonnet, et al. uFLIP: Un-
derstanding Flash IO Patterns. In Proceedings of the fourth
Conference on Innovative Data Systems Research (CIDR ’09),
Pacific Grove, California, January 2009.

[32] R. Branson. Presentation: Cassandra and Solid State
Drives. https://www.slideshare.net/rbranson/
cassandra-and-solid-state-drives.

[33] F. Chen, D. A. Koufaty, and X. Zhang. Understanding Intrin-
sic Characteristics and System Implications of Flash Mem-
ory Based Solid State Drives. In Proceedings of the 2009
Joint International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS/Performance ’09),
pages 181–192, Seattle, Washington, June 2009.

[34] F. Chen, R. Lee, and X. Zhang. Essential Roles of Exploit-
ing Internal Parallelism of Flash Memory Based Solid State
Drives in High-speed Data Processing. In Proceedings of
the 17th International Symposium on High Performance Com-
puter Architecture (HPCA-11), pages 266–277, San Antonio,
Texas, February 2011.

[35] J. B. Chen and B. Bershad. The Impact of Operating System
Structure on Memory System Performance. In Proceedings
of the 14th ACM Symposium on Operating Systems Principles
(SOSP ’93), Asheville, North Carolina, December 1993.

[36] P. M. Chen and D. A. Patterson. A New Approach to I/O
Performance Evaluation–Self-Scaling I/O Benchmarks, Pre-
dicted I/O Performance. In Proceedings of the 1993 ACM
SIGMETRICS Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS ’93), pages 1–12, Santa
Clara, California, May 1993.

[37] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz. De-
sign Implications for Enterprise Storage Systems via Multi-
dimensional Trace Analysis. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP ’11),
Cascais, Portugal, October 2011.

[38] Y. Cheng, F. Douglis, P. Shilane, G. Wallace, P. Desnoyers,
and K. Li. Erasing Belady’s Limitations: In Search of Flash
Cache Offline Optimality. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 379–392, Denver, CO,
2016. USENIX Association.

[39] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Optimistic Crash Consistency. In Proceed-
ings of the 24th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’13), Nemacolin Woodlands Resort, Farming-
ton, Pennsylvania, October 2013.

[40] S. Cho, C. Park, Y. Won, S. Kang, J. Cha, S. Yoon, and J. Choi.
Design Tradeoffs of SSDs: From Energy Consumptions Per-
spective. ACM Transactions on Storage, 11(2):8:1–8:24, Mar.
2015.

[41] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the ACM Symposium on Cloud Computing
(SOCC ’10), pages 143–154, Indianapolis, IN, June 2010.

[42] M. Cornwell. Anatomy of a Solid-state Drive. Commun.
ACM, 55(12):59–63, Dec. 2012.

[43] P. J. Denning. The Locality Principle. Commun. ACM, 48(7),
July 2005.

[44] P. Desnoyers. Analytic Modeling of SSD Write Performance.
In Proceedings of the 5th International Systems and Storage
Conference (SYSTOR ’12), Haifa, Israel, June 2013.

[45] C. Dirik and B. Jacob. The Performance of PC Solid-state
Disks (SSDs) As a Function of Bandwidth, Concurrency, De-
vice Architecture, and System Organization. In Proceedings
of the 36nd Annual International Symposium on Computer Ar-
chitecture (ISCA ’09), Austin, Texas, June 2009.

[46] M. Dunn and T. Feldman. Shingled Magnetic
Recording Models, Standardization, and Applications.
http://www.snia.org/sites/default/files/
Dunn-Feldman_SNIA_Tutorial_Shingled_Magnetic_
Recording-r7_Final.pdf.

[47] G. Gasior. The SSD Endurance Experiment. http://
techreport.com/review/27062.

[48] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash Trans-
lation Layer Employing Demand-based Selective Caching of
Page-level Address Mappings. In Proceedings of the 14th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XIV),
Washington, DC, March 2009.

[49] X. Haas and X. Hu. The Fundamental Limit of Flash Ran-
dom Write Performance: Understanding, Analysis and Per-
formance Modelling. IBM Research Report, 2010/3/31, Tech.
Rep, 2010.

[50] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. A File Is Not a File: Understanding the

I/O Behavior of Apple Desktop Applications. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles
(SOSP ’11), Cascais, Portugal, October 2011.

[51] J. He, D. Nguyen, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Reducing File System Tail Latencies with Chop-
per. In Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST ’15), Santa Clara, California,
February 2015.

[52] C. Hellwig. Online TRIM/discard performance im-
pact. http://oss.sgi.com/pipermail/xfs/
2011-November/015329.html.

[53] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang. Per-
formance Impact and Interplay of SSD Parallelism Through
Advanced Commands, Allocation Strategy and Data Granu-
larity. In Proceedings of the International Conference on Su-
percomputing (ICS ’11), Tucson, Arizona, May 2011.

[54] S. Jiang, L. Zhang, X. Yuan, H. Hu, and Y. Chen. S-FTL: An
Efficient Address Translation for Flash Memory by Exploiting
Spatial Locality. In Proceedings of the 27th IEEE Symposium
on Mass Storage Systems and Technologies (MSST ’11), Den-
ver, Colorado, May 2011.

[55] X. Jimenez, D. Novo, and P. Ienne. Wear Unleveling: Improv-
ing NAND Flash Lifetime by Balancing Page Endurance. In
Proceedings of the 12th USENIX Symposium on File and Stor-
age Technologies (FAST ’14), Santa Clara, California, Febru-
ary 2014.

[56] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The Multi-
streamed Solid-State Drive. In 6th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage ’14),
Philadelphia, PA, June 2014.

[57] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A Superblock-based
Flash Translation Layer for NAND Flash Memory. In Pro-
ceedings of the 6th ACM IEEE International Conference on
Embedded software (EMSOFT ’09), Grenoble, France, Octo-
ber 2009.

[58] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting Storage
for Smartphones. ACM Transactions on Storage, 8(4):14,
2012.

[59] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar. Flashsim: A
Simulator for Nand Flash-based Solid-State Drives. In Pro-
ceedings of the First International Conference on Advances in
System Simulation (SIMUL ’09), Porto, Portugal, September
2009.

[60] J. Kreps. SSDs and Distributed Data Systems.
http://blog.empathybox.com/post/24415262152/
ssds-and-distributed-data-systems.

[61] Lanyue Lu and Thanumalayan Sankaranarayana Pillai and
Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau.
WiscKey: Separating Keys from Values in SSD-conscious
Storage. In Proceedings of the 14th USENIX Conference on
File and Storage Technologies (FAST ’16), pages 133–148,
Santa Clara, California, February 2016.

[62] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2FS: A New
File System for Flash Storage. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST
’15), Santa Clara, California, February 2015.

[63] S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST: Locality-aware
Sector Translation for NAND Flash Memory-based Storage
Systems. Operating Systems Review, 42(6):36–42, Oct. 2008.

[64] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-
J. Song. A Log Buffer-based Flash Translation Layer Using
Fully-associative Sector Translation. ACM Trans. Embed.
Comput. Syst., 6(3), July 2007.

[65] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: Com-
paring Public Cloud Providers. In Proceedings of the Internet
Measurement Conference (IMC ’10), Melbourne, Australia,
November 2010.

[66] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
S. Lu. A Study of Linux File System Evolution. In Pro-
ceedings of the 11th USENIX Symposium on File and Storage
Technologies (FAST ’13), San Jose, California, February 2013.

[67] D. Ma, J. Feng, and G. Li. A Survey of Address Transla-
tion Technologies for Flash Memories. ACM Comput. Surv.,
46(3):36:1–36:39, Jan. 2014.

[68] A. Maislos. A New Era in Embedded Flash Memory.
Presentation at Flash Memory Summit. http://www.
flashmemorysummit.com/English/Collaterals/
Proceedings/2011/20110810_T1A_Maislos.pdf.

[69] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas,
L. Vivier, and B. S.A.S. The New Ext4 Filesystem: Current
Status and Future Plans. In Ottawa Linux Symposium (OLS
’07), Ottawa, Canada, July 2007.

[70] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. A Large-Scale
Study of Flash Memory Failures in The Field. In Proceed-
ings of the 2015 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS ’15),
Portland, Oregon, June 2015.

[71] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS:
Random Write Considered Harmful in Solid State Drives. In
Proceedings of the 10th USENIX Symposium on File and Stor-
age Technologies (FAST ’12), San Jose, California, February
2012.

[72] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. R. Stan. How
I Learned to Stop Worrying and Love Flash Endurance. In
2nd Workshop on Hot Topics in Storage and File Systems
(HotStorage ’10), Boston, Massachussetts, June 2010.

[73] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang.
SDF: Software-defined Flash for Web-scale Internet Storage
Systems. In Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XIV), Salt Lake City, Utah,
March 2014.

[74] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim.
A Reconfigurable FTL (Flash Translation Layer) Architecture
for NAND Flash-based Applications. ACM Trans. Embed.
Comput. Syst., 7(4):38:1–38:23, Aug. 2008.

[75] D. Park, B. Debnath, and D. Du. CFTL: A Convertible Flash
Translation Layer Adaptive to Data Access Patterns. In Pro-
ceedings of the 2010 ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS
’10), pages 365–366, New York, NY, June 2010.

[76] D. Park and D. H. Du. Hot Data Identification for Flash-Based
Storage Systems Using Multiple Bloom Filters. In Proceed-
ings of the 27th IEEE Symposium on Mass Storage Systems
and Technologies (MSST ’11), Denver, Colorado, May 2011.

[77] T. S. Pillai, R. Alagappan, L. Lu, V. Chidambaram, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Application
Crash Consistency and Performance with CCFS. In Proceed-
ings of the 15th USENIX Conference on File and Storage
Technologies (FAST ’17), Santa Clara, California, February
2017.

[78] M. Polte, J. Simsa, and G. Gibson. Enabling Enterprise Solid
State Disks Performance. In Proceedings of the First Work-
shop on Integrating Solid-state Memory into the Storage Hi-
erarchy (WISH), held in conjunction with ASPLOS, 2009.

[79] S. Robinson. Simulation: The Practice of Model Development
and Use. Palgrave Macmillan, 2014.

[80] M. Rosenblum and J. Ousterhout. The Design and Implemen-
tation of a Log-Structured File System. ACM Trans. Comput.
Syst., 10(1):26–52, Feb. 1992.

[81] R. H. Saavedra and A. J. Smith. Measuring Cache and TLB
Performance and Their Effect on Benchmark Runtimes. IEEE
Transactions on Computers, 44(10):1223–1235, 1995.

[82] S. W. Schlosser and G. R. Ganger. MEMS-based Storage
Devices and Standard Disk Interfaces: A Square Peg in a
Round Hole? In Proceedings of the 3rd USENIX Symposium
on File and Storage Technologies (FAST ’04), pages 87–100,
San Francisco, California, April 2004.

[83] B. Schroeder, R. Lagisetty, and A. Merchant. Flash Reliabil-
ity in Production: The Expected and the Unexpected. In Pro-
ceedings of the 14th USENIX Conference on File and Stor-
age Technologies (FAST ’16), page 67, Santa Clara, Califor-
nia, February 2016.

[84] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith,
C. A. N. Soules, and C. A. Stein. Journaling Versus Soft
Updates: Asynchronous Meta-data Protection in File Sys-
tems. In Proceedings of the USENIX Annual Technical Con-
ference (USENIX ’00), pages 71–84, San Diego, California,
June 2000.

[85] A. L. Shimpi. The Seagate 600 and 600 Pro SSD
Review. http://www.anandtech.com/show/6935/
seagate-600-ssd-review.

[86] J.-Y. Shin, Z.-L. Xia, N.-Y. Xu, R. Gao, X.-F. Cai, S. Maeng,
and F.-H. Hsu. FTL Design Exploration in Reconfigurable
High-performance SSD for Server Applications. In Proceed-
ings of the International Conference on Supercomputing (ICS
’09), pages 338–349, Yorktown Heights, NY, June 2009.

[87] K. Smith and M. I. Seltzer. File System Aging. In Proceedings
of the 1997 Sigmetrics Conference, Seattle, WA, June 1997.

[88] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,
and G. Peck. Scalability in the XFS File System. In Proceed-
ings of the USENIX Annual Technical Conference (USENIX
’96), San Diego, California, January 1996.

[89] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad. Ef-
ficient MRC Construction with SHARDS. In Proceedings of
the 13th USENIX Conference on File and Storage Technolo-
gies (FAST ’15), Santa Clara, California, February 2015.

[90] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and
A. Warfield. Characterizing Storage Workloads with Counter
Stacks. In Proceedings of the 11th Symposium on Operating
Systems Design and Implementation (OSDI ’14), pages 335–
349, Broomfield, Colorado, October 2014.

[91] S. C. Woo, M. Ohara, E. Torrie, J. P. Shingh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Methodolog-
ical Considerations. In Proceedings of the 22nd Annual In-
ternational Symposium on Computer Architecture (ISCA ’95),
pages 24–36, Santa Margherita Ligure, Italy, June 1995.

[92] G. Yadgar and M. Gabel. Avoiding the Streetlight Effect: I/O
Workload Analysis with SSDs in Mind. In 8th USENIX Work-
shop on Hot Topics in Storage and File Systems (HotStorage
’16), Denver, CO, June 2016.

[93] Yiying Zhang, Leo Arulraj, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau. De-indirection for Flash-based
SSDs with Nameless Writes. In Proceedings of the 10th
USENIX Symposium on File and Storage Technologies (FAST
’12), San Jose, California, February 2012.

[94] J. Zhang, J. Shu, and Y. Lu. ParaFS: A Log-structured File
System to Exploit the Internal Parallelism of Flash Devices.
In Proceedings of the USENIX Annual Technical Conference
(USENIX ’16), pages 87–100, Denver, CO, June 2016.

[95] Y. Zhou, F. Wu, P. Huang, X. He, C. Xie, and J. Zhou. An
Efficient Page-level FTL to Optimize Address Translation in
Flash Memory. In Proceedings of the EuroSys Conference
(EuroSys ’15), Bordeaux, France, April 2015.

