
Towards Realistic File-System Benchmarks with CodeMRI
Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin-Madison
{nitina, dusseau, remzi}@cs.wisc.edu

Abstract

Benchmarks are crucial to understanding software sys-
tems and assessing their performance. In file-system re-
search, synthetic benchmarks are accepted and widely
used as substitutes for more realistic and complex work-
loads. However, synthetic benchmarks are largely based
on the benchmark writer’s interpretation of the real work-
load, and how it exercises the system API. This is insuffi-
cient since even a simple operation through the API may
end up exercising the file system in very different ways
due to effects of features such as caching and prefetching.
In this paper, we describe our first steps in creating “real-
istic synthetic” benchmarks by building a tool, CodeMRI.
CodeMRI leverages file-system domain knowledge and a
small amount of system profiling in order to better under-
stand how the benchmark is stressing the system and to
deconstruct its workload.

1 Introduction

Everyone cares about data, from scientists running simu-
lations to families storing photos and tax returns. Thus,
the file and storage systems that store and retrieve our
important data play an essential role in our computer
systems. To handle the different needs of various user
communities, many different file and storage systems
have been developed, from the Google File System [11],
IBM GPFS [22] and NetApp Data ONTAP storage sys-
tem [10] to local file systems such as NTFS [26] and
Linux ext3 [32].

Unfortunately, file and storage systems are currently
difficult to benchmark [31]. There is little consensus re-
garding the workloads that matter and insufficient infras-
tructure to make it easy to run interesting workloads. To
evaluate the performance of a file and storage system, de-
velopers have a few different options, each with its own
set of disadvantages.
•Real Applications: One option for evaluating a file

or storage system is to directly measure its performance
when running real I/O-intensive applications. The obvi-
ous advantage of benchmarking with real applications is
that the performance results can correspond to actual sce-
narios in which the system will be used and that users care
about. However, the problem is that real I/O-intensive ap-
plications can be difficult to obtain, to setup, and to con-
figure correctly [30]. Often system evaluators compro-
mise by running “real applications” that they are the most
familiar with, such as compiling an operating system ker-

nel or untarring a source tree. While these workloads are
easier to setup, they may not be fully representative of the
end applications.
•Microbenchmarks of Application Kernels: A sec-

ond option is to run application kernels instead of the full
applications themselves. For example, instead of config-
uring and stressing a mail server, one can instead run the
PostMark [14] benchmark, which attempts to produce the
same file system traffic as a real mail server. Other exam-
ples of kernels include the Andrew Benchmark [13] and
SPC-1,2 [27]. While these kernels are simpler to run, they
have the fundamental problem that their simplifications
both may make them no longer representative of the orig-
inal workload and enable system designers to artificially
optimize to specific kernels.
•Trace replay: A third option is to replay file system

traces that have been previously gathered at various re-
search and industrial sites. Examples of traces include file
system traces from HP Labs [21] and a collection of I/O
and file system traces available through SNIA’s IOTTA
Repository [25]. Replaying file system traces eliminates
the need to setup and recreate the original applications,
but has challenges of its own. In particular, replaying the
trace while accurately preserving the original timing [3]
and accounting for dependencies across I/O requests [16]
are non-trivial problems. In addition, traces are often
large, unwieldy, and difficult to use.
•Synthetic workloads: A final option is to run syn-

thetic workloads that are designed to stress file systems
appropriately, even as technologies change. Synthetic
workloads, such as IOZone [19], SPECsfs97 [33], Syn-
RGen [9], fstress [2], and Chen’s self-scaling bench-
mark [7], contain a mix of POSIX file operations that can
be relatively scaled to stress different aspects of the sys-
tem. The major advantages of synthetic applications is
how simple they are to run and that they can be adapted
as desired. However, the major drawback of synthetic
workloads is that they may not be representative of any
real workloads that users care about.

We believe that the ideal benchmark for file and stor-
age systems combines theease of useof synthetic bench-
marks with the representativenessof real workloads.
Thus, the goal of this paper is to describe how one can
create realistic synthetic benchmarks. Specifically, our
approach is to provide a tool that enables one to create
a synthetic benchmark that is functionally equivalent to
a given real application; that is, the synthetic benchmark
stresses the system in the same way as the original appli-
cation.

Determining whether or not two workloads stress a sys-
tem in the same way is a challenging question; certainly,
the domain of the system under test has a large impact
on which features of the two workloads must be identical
for the resulting performance to be identical. For exam-
ple, if the system under test is a hardware cache, then the
two workloads might need to have identical addresses for
all issued instructions and referenced data; on the other
hand, if the system under test is a network protocol, the
two workloads might need to have the same timing be-
tween requests to/from the same remote nodes. There-
fore, the specific features of the real workload that must
be captured by the synthetic benchmark depend on the
system.

One might believe that an equivalent synthetic work-
load for file and storage systems could be created by sim-
ply mimicking the system calls through the file system
API (e.g., read, write, open, close, delete, mkdir, rmdir).
Given that tools such as strace [28] already exist to col-
lect system call traces, creating such a synthetic work-
load would be relatively straight-forward. The problem is
that system calls that appear identical (i.e., have the exact
same parameters) can end up exercising the file system in
very different ways and having radically different perfor-
mance.

File systems are complex pieces of system code con-
taining hundreds of thousands of lines of code spread
across many modules and source files. Modern file sys-
tems contain code to perform caching, prefetching, jour-
naling, storage allocation, and even failure handling; pre-
dicting which of these features will be employed by a
given system call is not straight-forward. Furthermore,
the storage devices that are physically storing the data
have complex performance characteristics; accesses to se-
quential blocks have orders of magnitude better perfor-
mance than accesses to random blocks.

Consider the example of aread operation issued
through the API. This read might be serviced from the
file-system buffer cache, it might be part of a sequential
stream to the disk or a random stream, or could involve
reading additional file system meta-data from the disk.
Similarly, awrite operation might allocate new space,
overwrite existing data, update file-system metadata, or
be buffered as part of a “delayed write”. In each of these
cases, the exercised code and the resulting performance
will be significantly different.

Our hypothesis is that to create an equivalent synthetic
benchmark for file and storage systems, one must mimic
not the system calls, but thefunction callsexercised dur-
ing workload execution, in order to be functionally equiv-
alent. We believe that if two workloads execute roughly
the same set of function calls within the file system, that
they will be roughly equivalent to one another.

In this paper, we describe our first steps in this direc-

tion by building a tool, CodeMRI (an “MRI” for Code,
if you will). CodeMRI uses detailed analysis of the
source code for the system under test to understand how
a workload is stressing it. Specifically, CodeMRI mea-
sures function-call invocation patterns and counts to iden-
tify internal system behavior. Our initial results in apply-
ing CodeMRI to macro-workloads and benchmarks such
as PostMark [14] on the Linux ext3 [32] file system are
promising.

First, CodeMRI is able to deconstruct complex work-
loads into micro-workloads; each micro-workload con-
tains system calls (e.g., read and write) with known in-
ternal behavior (e.g., hitting in the file buffer cache or
causing sequential versus random disk accesses). In other
words, with good accuracy, we are able to identify that a
“real” workload, such as PostMark, performs the same
set of file system function calls as a combination of sys-
tem calls with certain parameters. Second, we are able
to predict the runtime of the workload based on this set
of constituent micro-workloads. We are working to im-
prove CodeMRI to deconstruct more real workloads and
traces [21], in order to create their synthetic equivalents.

The rest of the paper is as follows: We discuss
CodeMRI in more detail in Section 2, discuss some chal-
lenges in Section 3, present related work in Section 4,
conclusions and future work in Section 5.

2 CodeMRI

2.1 Introduction

The goal of CodeMRI is to be able to construct synthetic
equivalents of real workloads. But there are two chal-
lenges in solving this problem. First, we need to accu-
rately deconstruct real workloads into constituentmicro-
workloads. A micro-workload is a simple, easy to under-
stand workload such as theread system call in its many
forms, each with the same behavior (cached or not, se-
quential or random). Second, we need to be able to use
the set of micro-workloads to compose a synthetic equiv-
alent of the original workload.

We plan to approach this problem by leveraging two
sources of information. First, we leverage domain knowl-
edge about the system under test. Second, we use tracing
to obtain useful information about the workload execu-
tion and the system under test.

Domain knowledge about file systems consists of ba-
sic knowledge about the different features that it provides,
such as caching and prefetching. This is useful to know
because different workloads can exercise different sys-
tem features that CodeMRI needs to identify. The do-
main knowledge guides the tracing of execution profiles
for micro-workloads. For example, we need to have an
execution profile for acached read.

2

For tracing the workload execution, we believe func-
tion invocation patterns and invocation counts provide the
amount of detail necessary to understand the benchmark
workload and the functionality that it exercises. This con-
stitutes theexecution profileof the workload. Our tech-
nique relies on some amount of tracing using a statically
instrumented version of the system under test.

In order to address the first challenge – to breakdown
real workloads into simpler micro-workloads, we com-
pare the execution profile of a real workload with the set
of execution profiles of individual micro-workloads. We
call the execution profile of a micro-workload amicro-
profile. To address the second challenge – to synthesize
a synthetic equivalent, we intend to compose the micro-
profiles together, along with timing and ordering infor-
mation. Microprofiles are thus the building blocks for
achieving both our objectives.

2.2 Building Microprofiles

The first step in building CodeMRI is to identify a com-
prehensive set of micro-workloads and build their micro-
profiles. We achieve this by running all the system calls
through the file system API, under the effect of various
file-system features. For example, in the case of aread
system call, we build microprofiles for read, cached read,
sequential read, and random read.

Through our experiments we find that keeping track
of sets of function invocations and their counts, during a
workload execution, allows us to build accurate micropro-
files. We also observe that it is cumbersome and unneces-
sary to keep the entire execution profile – instead we se-
lect a small set of function invocations that uniquely char-
acterize a microprofile. We call this thepredictor setof a
microprofile, and consequently the corresponding micro-
workload. A predictor set typically consists of one to few
tens of function calls, depending on the number of micro-
workloads. The intuition behind this approach is that each
function contributes towards completion of a higher level
workload such as aread. Each function thus serves as
the smallest unit of “useful work”. The goal is to identify
a set of functions that uniquely represent the higher level
workload. In order to identify the set of function calls that
constitute the predictor set for a workload, from amongst
all the possible functions that contribute, we define some
metrics to help automate the task.

We have three quantitative metrics associated with a
predictor set –slope, uniquenessand stability. Two of
these, uniqueness and stability (both on a scale of0 to 1),
are used in the selection of predictor sets. Each member
function in a predictor set has aslopewhich character-
izes the rate of change of invocation count with change
in some workload parameter (such as request size). We
define theuniquenessof a predictor set towards a micro-
workload (such asread) as its affinity with the micro-

workload. A uniqueness of1 implies that the particu-
lar predictor set is invoked exclusively during this work-
load’s execution, while0.5 implies that it has an equal
affinity with another workload, and0 makes it irrelevant
for that workload. Thestability of a predictor set is a
measure of the variability of function-invocation counts
as some workload parameter is varied. A perfectly stable
predictor set (i.e., with stability equal to1) will scale pro-
portional to theslope, as the request size of the workload
is increased, for instance. A stability of0 means that the
predictor set scales in a completely uncorrelated fashion
and is useless for prediction. Thus, an ideal predictor set
for a given workload is one having both uniqueness and
stability equal to1.

Figure 1 shows a simple example of the predictor set
for sequential reads having two member functions with
scalingslopesequal to0.85 and0.895, uniquenessof 1,
andstability very close to1. This makes it a good candi-
date for being a predictor set to identify sequential reads.

To compute the slope for member functions in a pre-
dictor set, we keep track of their invocation counts, as
we vary a workload parameter. This is done for a small
“training range” to create a model. For example, in Fig-
ure 1, the training range for the request size model is from
200 to 1200 file system blocks. We found that predictor
sets identified by CodeMRI have excellent stability that
extends well beyond the training-model range.

The predictor set allows us to accurately predict the ex-
tent of the corresponding micro-workload. For example,
if we observe a call to the functionext3 readpages
andext3 block to path a certain number of times,
we can infer the corresponding bytes of random read be-
ing performed. Similarly the predictor set for cached
reads corresponds to the amount of bytes being serviced
from the buffer cache during aread operation.

The choice of a predictor set for any workload is not
constant. For a single micro-workload, it is easy to find
a predictor set with uniqueness equal to1. However, for
a real, complex workload, consisting of potentially tens
to hundreds of micro-workloads, there can be significant
overlap in the set of function invocations amongst the dif-
ferent micro-workloads, such that finding a predictor set
for each of them is not straightforward. The size of the
predictor sets depends on the number of micro-workloads
to be deconstructed from the real workload. The more
complex the real workload, the greater the number of
functions required to construct predictor sets for each of
the micro-workload.

CodeMRI consists of an algorithm based on linear-
programming (LP) to select predictor sets, attempting
to maximize the uniqueness for each of the micro-
workloads. The LP problem constraints are in the form
of minimum acceptable values for slope and stability,
wherein the predictor set consists of the top-K functions

3

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

200 400 600 800 1000 1200

S
ca

lin
g

of
 P

re
di

ct
or

 S
et

Request Size (# Blocks)

Predictor Set for Sequential Reads

Scaling of Function 1
Scaling of Function 2

Figure 1: Predictor Set.
Having two member functions
with scaling slopes equal to
0.85 and 0.895, uniquenessof
1, andstabilityvery close to1

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
re

di
ct

ed
 R

eq
ue

st
 S

iz
e

Actual Request Size (# 1000 Blocks)

Prediction Accuracy for Macro-Workload

Random Writes
Model

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

P
re

di
ct

ed
 R

at
io

Actual Request Ratio

Prediction Accuracy for Macro-Workload

WR/RR
WR/RS

Model

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10

P
re

di
ct

ed
 C

ac
he

 A
cc

es
se

s

Actual Cache Accesses (# 100 Blocks)

Prediction Accuracy under Caching

Cached Reads
Model

Figure 2: Accuracy for Macro-Workloads. The leftmost graph shows the accurate
prediction of random writes in a macro-workload consistingof writes and reads (both random
and sequential). The middle graph shows the ratio of random writes (WR) to read sequential (RS)
and random (RR) as predicted by CodeMRI. These ratios show that the relative counts across
workloads are also accurate. The rightmost graph shows the shows the accuracy of prediction
under caching. The Model line represents the training rangeon which the slope was computed.

Micro- Variations Parameter
Workload Extent or Count
Read sequential or random degree of randomness

cached or not cached degree of caching
Write sequential or random degree of randomness
POSIX open, mkdir, rmdir, count
calls create, delete, close

cached calls degree of caching
e.g., open after create

Table 1:List of Micro-Workloads Tested. The table lists
the various micro-workloads and their variations that werede-
constructed with CodeMRI, along with the parameter of interest
that was successfully predicted.

that satisfy the given criteria, with K being the number
of micro-workloads under consideration. In the absence
of any function that satisfies the given slope and stability
criteria, the conditions are relaxed until a match is found.

In practice, we find that most micro-workloads exhibit
a natural division of function invocations, making it feasi-
ble to select high-quality predictor sets that give accurate
results during workload deconstruction.

2.3 Using Microprofiles for Deconstruction

We now describe the use of microprofiles to deconstruct
workloads. We present our discussion with increasing
complexity of benchmark workloads:
• micro-workload, such as aread or write
• macro-workload consisting of micro-workloads
• macro-workload under caching
• application kernel: PostMark [14]

We find that CodeMRI has near-perfect accuracy for
all the individual micro-workloads (not shown). Table 1
shows the list of micro-workloads that we have experi-
mented with and are able to predict with good accuracy.

The accuracy continues to be good for macro-
workloads. Figure 2 shows the accuracy of prediction
for a macro-workload consisting ofreads,writes and
system calls such asopen andclose, as we vary the re-
quest size. The leftmost graph shows the accurate predic-
tion of random writes, and the middle one shows the ra-
tio of writes to sequential and random reads as predicted.
The rightmost graph in Figure 2 shows the accuracy of

prediction of reads under caching. In these graphs, the
“Model” line represents the training range on which the
slope for prediction was computed.

CodeMRI is thus able to accurately identify workloads
well beyond the small training range of request sizes for
which the slope model was computed. Only for larger
deviations from this range do we observe inaccuracy.

In order to verify whether this deconstructed workload
has any correlation with actual performance, we use it to
predict performance and compare with the actual mea-
sured performance. The hypothesis is that if the decon-
struction is accurate, then the sum of time taken by the
individual micro-workloads should be close to the actual
measured time. To predict performance once we have
identified the set of micro-workloads, we simply add the
time it takes to run them individually. This is a coarse
estimate, as it does not take into account dependencies
amongst the micro-workloads.

Figure 3 shows an example of this for a macro-
workload consisting of random and sequential reads,
mkdir, create, and delete operations. The left
graph highlights that the primary contributor(s) to per-
formance can be different from the expected ones, and
CodeMRI can identify the real contributors. The “issued
operations” are the ones issued through the file system
API. The “actual operations” are the ones being actually
issued by the file system to the disk, and not serviced from
cache. The “predicted operations” are the ones identified
through CodeMRI. In this example, random reads con-
tribute much less to overall runtime than sequential reads
and mkdir. The stacked bar graph on the right shows the
predicted runtime contributions from individual micro-
workloads. We see that the predicted cumulative runtime
matches closely with the measured runtime, demonstrat-
ing the accuracy of CodeMRI.

CodeMRI thus not only deconstructs workloads accu-
rately, but the deconstructed workload is useful in predict-
ing performance. We find that the actual runtime of the
workload is in accordance with the predicted workload.

We next deconstruct a popular file-system benchmark,
PostMark [14], that simulates an email workload, and find

4

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

R_seq Mkdir Create R_rand Delete

N
um

be
r

of
 O

pe
ra

tio
ns

Workload Breakdown

Issued Operations
Actual Operations

Predicted Operations

 0

 500

 1000

 1500

 2000

Actual Predicted

T
im

e
T

ak
en

 (
m

se
c)

Contribution of Individual Micro-Workloads

seq read

mkdir

create
rand read
delete

Figure 3: Macro-workload Deconstruction. The
macro-benchmark consists ofmkdir, create, delete,
repeated random reads to a small file, and sequential reads
to a large file, resulting in random reads hitting the cache.
The graph on the left shows the deconstruction of this macro-
workload by CMRI which identifies the effective (reduced)
count of random reads. The graph on the right shows the
individual contribution of different micro-workloads towards
the total runtime, as predicted by CodeMRI.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0200400600
0

5

10

C
ou

nt
 o

f P
re

di
ct

or
/O

pe
ra

tio
n

(x
 1

00
0)

T
im

e
T

ak
en

 (
m

se
c)

Cache Size (MB)

Postmark Workload with Varying Cache Size

Seq Reads

Rand Reads

Total Time

Cache Reads

Open
Close

Delete
Lookup
Create
Rmdir
Mkdir

Cache Reads
Seq Reads

Rand Reads
Total Time

Figure 4: PostMark with Decreasing Cache Size.
The postmark configuration is 1000 files, 200 sub-
directories, 4K block size, 1000 transactions, with other pa-
rameters as default. CodeMRI accurately deconstructs the
effective workload and the total runtime is in accordance
with the predicted workload. Important micro-workloads are
in thicker lines.

that the accuracy is near-perfect (not shown), as in the
previous cases. We investigate the PostMark workload
one step further. Figure 4 shows the breakdown of Post-
Mark’s workload under varying cache sizes. As the size
of cache decreases, CodeMRI is able to identify its ef-
fect on the workload, as there are fewer cached reads, and
sequential reads becoming increasingly “random”. The
total runtime of the benchmark is also proportional to
the overall effective workload, making it a useful perfor-
mance predictor.

Our evaluation of CodeMRI’s accuracy for a number of
simple to more complex workloads gives us confidence
in applying it on real applications and file-system traces.
We are trying to incrementally increase the complexity of
the input workload, and are currently deconstructing file-
system traces, such as one from HP Labs [21], with the
final goal of running CodeMRI for real applications.

2.4 Using Microprofiles for Synthesis

The final step in the construction of realistic synthetic
benchmarks is to use the microprofiles to synthesize an
equivalent workload. In addition to building the micro-

profiles, we also need to maintain timing and ordering
information, in order to issue the micro-workloads while
accurately preserving the original timing, and accounting
for dependencies across I/O requests. Our current imple-
mentation has the necessary setup to collect most of this
information. We continue to refine CodeMRI in order to
synthesize benchmarks equivalent to real workloads.

3 Challenges
In this section we discuss potential challenges in building
CodeMRI, and some alternate approaches.

Another approach would be to use tools such as
strace [28] to collect system calls for real applications and
replay the trace. This alone will not be useful, since sim-
ilar calls through the API can end up exercising the file
system in very different ways and have radically different
performance due to effects of caching and prefetching.

A more effective solution will be to obtain both sys-
tem call and disk traces to account for file system policies
and mechanisms. But correlating strace and disk trace
information is not entirely straightforward due to timing
issues, especially in presence of buffering and journal-
ing. Furthermore, the disk I/O might be reordered or de-
layed, and be affected by file system daemons such as
pdflush.

Semantic Block Analysis [20] is another means to in-
fer file system level behavior, but requires detailed file
system knowledge. CodeMRI has the added advantage of
being oblivious of the file system in question.

In its current form, CodeMRI needs source code for
analysis, which can somewhat limit its scope. However,
there is nothing fundamentally limiting CodeMRI to re-
quire instrumented source code. In order to collect the ex-
ecution profile of a workload, tools such as Kerninst [29]
can be used. They have the advantage of tracing unmodi-
fied binaries, without requiring source code access.

Factors such as configuration parameters, hardware
settings and real-time traffic can also affect the perfor-
mance of a system. These factors cannot be captured by
the application source code alone. Since CodeMRI is de-
signed to operate on the running workload (and not as a
static analysis), it is going to capture the effects of these
external factors as they drive the source code into differ-
ent regimes of operation. The goal of CodeMRI is to de-
construct a running workload, as opposed to generating
all the different workload execution scenarios.

4 Related Work
We leverage system profiling and file system domain
knowledge to understand internal system behavior dur-
ing execution of real workloads, and use that to create
synthetic equivalents of the workload. Several tools al-
ready exist for instrumenting and profiling systems, such

5

as, Kerninst [29], Dtrace [5] and gprof [12]. For our anal-
ysis, the level of instrumentation provided by static instru-
mentation was sufficient since almost all of CodeMRI’s
logic lies outside of tracing. In the future, more sophis-
ticated profiling tools can be integrated. Similar to our
work, performance debugging of complex distributed sys-
tems [1, 4, 6] also uses tracing at various points to infer
causal paths, diagnose and tune performance bottlenecks,
and even to detect failures using runtime path analysis.
A number of tools have been developed to understand,
deconstruct and debug complex software systems such
as Simpoint [24] and Shear [8]. Delta debugging is an-
other technique that uses an automated testing framework
to compare program runs and access the state of an ex-
ecutable program to prove the causes of program fail-
ures [34]. Mesnieret al.have proposed “relative fitness”
models for predicting performance differences between a
pair of storage devices [17]. A relative model captures
the workload-device feedback, and the performance and
utilization of one device can be used in predicting the per-
formance of another device. This shifts the problem from
identifying workload characteristics to device character-
istics. In the future, it will be interesting to use CodeMRI
together with relative fitness models. Finally, we ben-
efited from opinions expressed in other “Hot” papers on
benchmarking [18, 23].

5 Conclusions and Future Work
We have presented our first steps in building CodeMRI –
a tool that enables the construction of realistic synthetic
benchmarks from real workloads and file-system traces.
Our initial results in applying CodeMRI to simple work-
loads have been promising. We intend to continue im-
proving its accuracy for more real-world workloads.

Several challenges remain to be addressed – our cur-
rent implementation is meant to illustrate the benefits of
CodeMRI and is not optimized for production environ-
ments. In practice, we find that the small amount of trac-
ing doesn’t slow down the system appreciably, but op-
timizations for performance and accuracy are certainly
possible. We also plan to explore use of statistical tech-
niques similar to ones used in bug isolation [15] to im-
prove accuracy and stability of predictions. Another goal
is to minimize runtime variability due to concurrent ac-
tivity and non-reproducible events (e.g., interrupts).

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, andA. M.

oen. Performance Debugging for Distributed Systems of Black
Boxes. InSOSP ’03.

[2] D. Anderson and J. Chase. Fstress: A flexible network file service
benchmark. InTR, Duke University, May 2002.

[3] E. Anderson, M. Kallahalla, M. Uysal, and R. Swaminathan. But-
tress: A toolkit for flexible and high fidelity I/O benchmarking. In
FAST ’04, San Francisco, CA, April 2004.

[4] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie:
Real-Time Modeling and Performance-Aware Systems. InHotOS
’03.

[5] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instru-
mentation of production systems. InUSENIX ’04, pages 15–28.

[6] M. Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox, and
E. Brewer. Path-Based Failure and Evolution Management. In
NSDI ’04, San Francisco, CA, March 2004.

[7] P. M. Chen and D. A. Patterson. A New Approach to I/O Per-
formance Evaluation–Self-Scaling I/O Benchmarks, Predicted I/O
Performance. InSIGMETRICS ’93.

[8] T. E. Denehy, J. Bent, F. I. Popovici, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Deconstructing Storage Arrays. InASP-
LOS XI, pages 59–71, Boston, MA, October 2004.

[9] M. R. Ebling and M. Satyanarayanan. Synrgen: an extensible file
reference generator. InSIGMETRICS ’94.

[10] M. Eisler, P. Corbett, M. Kazar, D. S. Nydick, and C. Wagner.
Data ontap gx: a scalable storage cluster. InFAST’07.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File Sys-
tem. InSOSP ’03.

[12] Gprof. http://www.gnu.org/software/binutils/manual/gprof-
2.9.1/gprof.html. 1998.

[13] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West. Scale and Performance in a Dis-
tributed File System.ACM TOCS, February 1988.

[14] J. Katcher. PostMark: A New File System Benchmark. Technical
Report TR-3022, Network Appliance Inc., October 1997.

[15] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scal-
able statistical bug isolation. InPLDI ’05.

[16] M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lopez, J. Hen-
dricks, G. R. Ganger, and D. O’Hallaron. trace: parallel trace
replay with approximate causal events. InFAST ’07.

[17] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng, and
G. R. Ganger. Modeling the relative fitness of storage.

[18] J. C. Mogul. Brittle metrics in operating systems research. In
HotOS ’99.

[19] W. Norcutt. The IOzone Filesystem Benchmark.
http://www.iozone.org/.

[20] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Analysis and Evolution of Journaling File Systems. InUSENIX
’05, pages 105–120, Anaheim, CA, April 2005.

[21] E. Riedel, M. Kallahalla, and R. Swaminathan. A Framework for
Evaluating Storage System Security. InFAST ’02.

[22] F. Schmuck and R. Haskin. Gpfs: A shared-disk file systemfor
large computing clusters. InFAST ’02.

[23] M. I. Seltzer, D. Krinsky, K. A. Smith, and X. Zhang. The case
for application-specific benchmarking. InHotOS, 1999.

[24] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat-
ically characterizing large scale program behavior. InASPLOS
’02.

[25] SNIA. Storage network industry association: Iotta repository.
http://iotta.snia.org, 2007.

[26] D. A. Solomon. Inside Windows NT. Microsoft Programming
Series. Microsoft Press, 2nd edition, May 1998.

[27] SPC. Storage performance council.
http://www.storageperformance.org/, 2007.

[28] strace. http://linux.die.net/man/1/strace. 2008.
[29] A. Tamches and B. P. Miller. Fine-grained dynamic instrumenta-

tion of commodity operating system kernels. InOSDI ’99.
[30] D. Thain, J. Bent, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,

and M. Livny. Pipeline and Batch Sharing in Grid Workloads. In
HPDC 12, pages 152–161, Seattle, WA, June 2003.

[31] A. Traeger, N. Joukov, C. P. Wright, and E. Zadok. A nine year
study of file system and storage benchmarking. Accepted for pub-
lication, ETA February 2008.

[32] S. C. Tweedie. Journaling the Linux ext2fs File System.In The
Fourth Annual Linux Expo, Durham, North Carolina, May 1998.

[33] M. Wittle and B. E. Keith. LADDIS: The next generation inNFS
file server benchmarking. InUSENIX Summer, 1993.

[34] A. Zeller. Isolating cause-effect chains from computer programs.
In 10th FSE, 2002.

6

