
Reducing File System Tail Latencies with Chopper
Jun He, Duy Nguyen†, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences, †Department of Statistics
University of Wisconsin–Madison

Abstract
We present Chopper, a tool that efficiently explores the
vast input space of file system policies to find behav-
iors that lead to costly performance problems. We fo-
cus specifically on block allocation, as unexpected poor
layouts can lead to high tail latencies. Our approach
utilizes sophisticated statistical methodologies, based on
Latin Hypercube Sampling (LHS) and sensitivity analy-
sis, to explore the search space efficiently and diagnose
intricate design problems. We apply Chopper to study the
overall behavior of two file systems, and to study Linux
ext4 in depth. We identify four internal design issues in
the block allocator of ext4 which form a large tail in the
distribution of layout quality. By removing the underly-
ing problems in the code, we cut the size of the tail by an
order of magnitude, producing consistent and satisfactory
file layouts that reduce data access latencies.

1 Introduction
As the distributed systems that power the cloud have ma-
tured, a new performance focus has come into play: tail
latency. As Dean and Barroso describe, long tails can dra-
matically harm interactive performance and thus limit the
applications that can be effectively deployed at scale in
modern cloud-based services [17]. As a result, a great
deal of recent research effort has attacked tail latency di-
rectly [6,49,51]; for example, Alizadeh et al. show how to
reduce the network latency of the 99th percentile by a fac-
tor of ten through a combination of novel techniques [6].

The fundamental reason that reducing such tail latency
is challenging is that rare, corner-case behaviors, which
have little impact on a single system, can dominate when
running a system at scale [17]. Thus, while the well-
tested and frequently-exercised portions of a system per-
form well, the unusual behaviors that are readily ignored
on one machine become the common case upon one thou-
sand (or more) machines.

To build the next generation of robust, predictably per-
forming systems, we need an approach that can read-
ily discover corner-case behaviors, thus enabling a de-
veloper to find and fix intrinsic tail-latency problems be-
fore deployment. Unfortunately, finding unusual behav-
ior is hard: just like exploring an infinite state space
for correctness bugs remains an issue for today’s model
checkers [10, 19], discovering the poorly-performing tail-
influencing behaviors presents a significant challenge.

One critical contributor to tail latency is the local file
system [8]. Found at the heart of most distributed file sys-
tems [20, 47], local file systems such as Linux ext4, XFS,
and btrfs serve as the building block for modern scalable
storage. Thus, if rare-case performance of the local file
system is poor, the performance of the distributed file sys-
tem built on top of it will suffer.

In this paper, we present Chopper, a tool that en-
ables developers to discover (and subsequently repair)
high-latency operations within local file systems. Chop-
per currently focuses on a critical contributor to unusual
behavior in modern systems: block allocation, which
can reduce file system performance by one or more or-
ders of magnitude on both hard disk and solid state
drives [1, 11, 13, 30, 36]. With Chopper, we show how to
find such poor behaviors, and then how to fix them (usu-
ally through simple file-system repairs).

The key and most novel aspect of Chopper is its usage
of advanced statistical techniques to search and investi-
gate an infinite performance space systematically. Specif-
ically, we use Latin hypercube sampling [29] and sensi-
tivity analysis [40], which has been proven efficient in
the investigation of many-factor systems in other appli-
cations [24,31,39]. We show how to apply such advanced
techniques to the domain of file-system performance anal-
ysis, and in doing so make finding tail behavior tractable.

We use Chopper to analyze the allocation performance
of Linux ext4 and XFS, and then delve into a detailed
analysis of ext4 as its behavior is more complex and var-
ied. We find four subtle flaws in ext4, including behav-
iors that spread sequentially-written files over the entire
disk volume, greatly increasing fragmentation and induc-
ing large latency when the data is later accessed. We also
show how simple fixes can remedy these problems, result-
ing in an order-of-magnitude improvement in the tail lay-
out quality of the block allocator. Chopper and the ext4
patches are publicly available at:

research.cs.wisc.edu/adsl/Software/chopper

The rest of the paper is organized as follows. Section 2
introduces the experimental methodology and implemen-
tation of Chopper. In Section 3, we evaluate ext4 and
XFS as black boxes and then go further to explore ext4 as
a white box since ext4 has a much larger tail than XFS.
We present detailed analysis and fixes for internal allo-
cator design issues of ext4. Section 4 introduces related
work. Section 5 concludes this paper.

2 Diagnosis Methodology
We now describe our methodology for discovering inter-
esting tail behaviors in file system performance, particu-
larly as related to block allocation. The file system input
space is vast, and thus cannot be explored exhaustively;
we thus treat each file system experiment as a simulation,
and apply a sophisticated sampling technique to ensure
that the large input space is explored carefully.

In this section, we first describe our general experimen-
tal approach, the inputs we use, and the output metric of
choice. We conclude by presenting our implementation.

2.1 Experimental Framework
The Monte Carlo method is a process of exploring simu-
lation by obtaining numeric results through repeated ran-
dom sampling of inputs [38,40,43]. Here, we treat the file
system itself as a simulator, thus placing it into the Monte
Carlo framework. Each run of the file system, given a set
of inputs, produces a single output, and we use this frame-
work to explore the file system as a black box.

Each input factor Xi (i = 1, 2, ...,K) (described fur-
ther in Section 2.2) is estimated to follow a distribution.
For example, if small files are of particular interest, one
can utilize a distribution that skews toward small file sizes.
In the experiments of this paper, we use a uniform distri-
bution for fair searching. For each factor Xi, we draw
a sample from its distribution and get a vector of values
(X1

i , X
2
i , X

3
i , .., X

N
i). Collecting samples of all the fac-

tors, we obtain a matrix M .

M =

X1

1 X1
2 ... X1

K

X2
1 X2

2 ... X2
K

...
XN

1 XN
2 ... XN

K

 Y =

Y 1

Y 2

...
Y N

Each row in M , i.e., a treatment, is a vector to be used

as input of one run, which produces one row in vector Y .
In our experiment, M consists of columns such as the size
of the file system and how much of it is currently in use.
Y is a vector of the output metric; as described below,
we use a metric that captures how much a file is spread
out over the disk called d-span. M and Y are used for
exploratory data analysis.

The framework described above allows us to explore
file systems over different combinations of values for un-
certain inputs. This is valuable for file system studies
where the access patterns are uncertain. With the frame-
work, block allocator designers can explore the conse-
quences of design decisions and users can examine the
allocator for their workload.

In the experiment framework, M is a set of treatments
we would like to test, which is called an experimental plan
(or experimental design). With a large input space, it is
essential to pick input values of each factor and organize
them in a way to efficiently explore the space in a limited
number of runs. For example, even with our refined space

in Table 1 (introduced in detail later), there are about 8×
109 combinations to explore. With an overly optimistic
speed of one treatment per second, it still would take 250
compute-years to finish just one such exploration.

Latin Hypercube Sampling (LHS) is a sampling method
that efficiently explores many-factor systems with a large
input space and helps discover surprising behaviors [25,
29, 40]. A Latin hypercube is a generalization of a Latin
square, which is a square grid with only one sample point
in each row and each column, to an arbitrary number of di-
mensions [12]. LHS is very effective in examining the in-
fluence of each factor when the number of runs in the ex-
periment is much larger than the number of factors. It aids
visual analysis as it exercises the system over the entire
range of each input factor and ensures all levels of it are
explored evenly [38]. LHS can effectively discover which
factors and which combinations of factors have a large in-
fluence on the response. A poor sampling method, such
as a completely random one, could have input points clus-
tered in the input space, leaving large unexplored gaps in-
between [38]. Our experimental plan, based on LHS, con-
tains 16384 runs, large enough to discover subtle behav-
iors but not so large as to require an impractical amount
of time.

2.2 Factors to Explore
File systems are complex. It is virtually impossible to
study all possible factors influencing performance. For
example, the various file system formatting and mounting
options alone yield a large number of combinations. In
addition, the run-time environment is complex; for exam-
ple, file system data is often buffered in OS page caches in
memory, and differences in memory size can dramatically
change file system behavior.

In this study, we choose to focus on a subset of factors
that we believe are most relevant to allocation behavior.
As we will see, these factors are broad enough to dis-
cover interesting performance oddities; they are also not
so broad as to make a thorough exploration intractable.

There are three categories of input factors in Chopper.
The first category of factors describes the initial state of
the file system. The second category includes a relevant
OS state. The third category includes factors describing
the workload itself. All factors are picked to reveal poten-
tially interesting design issues. In the rest of this paper, a
value picked for a factor is called a level. A set of levels,
each of which is selected for a factor, is called a treat-
ment. One execution of a treatment is called a run. We
picked twelve factors, which are summarized in Table 1
and introduced as follows.

We create a virtual disk of DiskSize bytes, because
block allocators may have different space management
policies for disks of different sizes.

The UsedRatio factor describes the ratio of disk that

Factor Description Presented Space

FS

DiskSize Size of disk the file system is mounted on. 1,2,4,...,64GB
UsedRatio Ratio of used disk. 0, 0.2, 0.4, 0.6

FreeSpaceLayout Small number indicates high fragmentation. 1,2,...,6

OS CPUCount Number of CPUs available. 1,2

W
or

kl
oa

d

FileSize Size of file. 8,16,24,...,256KB
ChunkCount Number of chunks each file is evenly divided into. 4

InternalDensity Degree of sparseness or overwriting. 0.2,0.4,...,2.0
ChunkOrder Order of writing the chunks. permutation(0,1,2,3)

Fsync Pattern of fsync(). ****, *=0 or 1
Sync Pattern of close(), sync(), and open(). ***1, *=0 or 1

FileCount Number of files to be written. 1,2
DirectorySpan Distance of files in the directory tree. 1,2,3,...,12

Table 1: Factors in Experiment.

0.0

0.1

0.2

0.3

4K
B

8K
B

16
K

B
32

K
B

64
K

B
12

8K
B

25
6K

B
51

2K
B

1M
B

2M
B

4M
B

8M
B

16
M

B
32

M
B

64
M

B
12

8M
B

25
6M

B
51

2M
B

1G
B

2G
B

4G
B

8G
B

16
G

B
32

G
B

64
G

B
12

8G
B

25
6G

B
51

2G
B

1T
B

2T
B

4T
B

Free Extent Size (log scale)

R
at

io

layout #: mean,sd

1: 0.69, 1

2: 1.91, 0.78

3: 2.44, 0.55

4: 2.79, 0.32

5: 3.04, 0.1

Figure 1: LayoutNumber. Degree of fragmentation
represented as lognormal distribution.

has been used. Chopper includes it because block alloca-
tors may allocate blocks differently when the availability
of free space is different.

The FreeSpaceLayout factor describes the contiguity
of free space on disk. Obtaining satisfactory layouts de-
spite a paucity of free space, which often arises when file
systems are aged, is an important task for block alloca-
tors. Because enumerating all fragmentation states is im-
possible, we use six numbers to represent degrees from
extremely fragmented to generally contiguous. We use
the distribution of free extent sizes to describe the de-
gree of fragmentations; the extent sizes follow lognormal
distributions. Distributions of layout 1 to 5 are shown
in Figure 1. For example, if layout is number 2, about
0.1 × DiskSize × (1 − UsedRatio) bytes will consist
of 32KB extents, which are placed randomly in the free
space. Layout 6 is not manually fragmented, in order to
have the most contiguous free extents possible.

The CPUCount factor controls the number of CPUs
the OS runs on. It can be used to discover scalability is-
sues of block allocators.

The FileSize factor represents the size of the file to be
written, as allocators may behave differently when differ-
ent sized files are allocated. For simplicity, if there is more
than one file in a treatment, all of them have the same size.

A chunk is the data written by a write() call. A file
is often not written by only one call, but a series of writes.
Thus, it is interesting to see how block allocators act with
different numbers of chunks, which ChunkCount factor
captures. In our experiments, a file is divided into multiple
chunks of equal sizes. They are named by their positions
in file, e.g., if there are four chunks, chunk-0 is at the head
of the file and chunk-3 is at the end.

Sparse files, such as virtual machine images [26],
are commonly-used and important. Files written non-
sequentially are sparse at some point in their life, although
the final state is not. On the other hand, overwriting is also
common and can have effect if any copy-on-write strategy
is adopted [34]. The InternalDensity factor describes the
degree of coverage (e.g. sparseness or overwriting) of a

file. For example, if InternalDensity is 0.2 and chunk size
is 10KB, only the 2KB at the end of each chunk will be
written. If InternalDensity is 1.2, there will be two writes
for each chunk; the first write of this chunk will be 10KB
and the second one will be 2KB at the end of the chunk.

The ChunkOrder factor defines the order in which the
chunks are written. It explores sequential and random
write patterns, but with more control. For example, if
a file has four chunks, ChunkOrder=0123 specifies that
the file is written from the beginning to the end; Chunk-
Order=3210 specifies that the file is written backwards.

The Fsync factor is defined as a bitmap describing
whether Chopper performs an fsync() call after each
chunk is written. Applications, such as databases, often
use fsync() to force data durability immediately [15,
23]. This factor explores how fsync() may interplay
with allocator features (e.g., delayed allocation in Linux
ext4 [28]). In the experiment, if ChunkOrder=1230 and
Fsync=1100, Chopper will perform an fsync() after
chunk-1 and chunk-2 are written, but not otherwise.

The Sync factor defines how we open, close, or sync
the file system with each write. For example, if Chunk-
Order=1230 and Sync=0011, Chopper will perform the
three calls after chunk-3 and perform close() and
sync() after chunk-0; open() is not called after the
last chunk is written. All Sync bitmaps end with 1, in or-
der to place data on disk before we inquire about layout in-
formation. Chopper performs fsync() before sync()
if they both are requested for a chunk.

The FileCount factor describes the number of files
written, which is used to explore how block allocators pre-
serve spatial locality for one file and for multiple files. In
the experiment, if there is more than one file, the chunks
of each file will be written in an interleaved fashion. The
ChunkOrder, Fsync, and Sync for all the files in a single
treatment are identical.

Chopper places files in different nodes of a directory
tree to study how parent directories can affect the data
layouts. The DirectorySpan factor describes the dis-
tance between parent directories of the first and last files

in a breadth-first traversal of the tree. If FileCount=1,
DirectorySpan is the index of the parent directory in the
breadth-first traversal sequence. If FileCount=2, the first
file will be placed in the first directory, and the second
one will be at the DirectorySpan-th position of the traver-
sal sequence.

In summary, the input space of the experiments pre-
sented in this paper is described in Table 1. The choice
is based on efficiency and simplicity. For example, we
study relatively small file sizes because past studies of file
systems indicates most files are relatively small [5, 9, 35].
Specifically, Agrawal et. al. found that over 90% of the
files are below 256 KB across a wide range of systems [5].
Our results reveal many interesting behaviors, many of
which also apply to larger files. In addition, we study
relatively small disk sizes as large ones slow down ex-
periments and prevent broad explorations in limited time.
The file system problems we found with small disk sizes
are also present with large disks.

Simplicity is also critical. For example, we use at most
two files in these experiments. Writing to just two files,
we have found, can reveal interesting nuances in block
allocation. Exploring more files make the results more
challenging to interpret. We leave further exploration of
the file system input space to future work.

2.3 Layout Diagnosis Response
To diagnose block allocators, which aim to place data
compactly to avoid time-consuming seeking on HDDs [7,
36] and garbage collections on SSDs [11, 30], we need
an intuitive metric reflecting data layout quality. To this
end, we define d-span, the distance in bytes between the
first and last physical block of a file. In other words, d-
span measures the worst allocation decision the allocator
makes in terms of spreading data. As desired, d-span is an
indirect performance metric, and, more importantly, an in-
tuitive diagnostic signal that helps us find unexpected file-
system behaviors. These behaviors may produce poor lay-
outs that eventually induce long data access latencies. d-
span captures subtle problematic behaviors which would
be hidden if end-to-end performance metrics were used.
Ideally, d-span should be the same size as the file.

d-span is not intended to be an one-size-fits-all metric.
Being simple, it has its weaknesses. For example, it can-
not distinguish cases that have the same span but different
internal layouts. An alternative of d-span that we have in-
vestigated is to model data blocks as vertices in a graph
and use average path length [18] as the metric. The min-
imum distance between two vertices in the graph is their
corresponding distance on disk. Although this metric is
able to distinguish between various internal layouts, we
have found that it is often confusing. In contrast, d-span
contains less information but is much easier to interpret.

In addition to the metrics above, we have also explored

Manager

Workload Generator

Workload Player FS Manipulator

FS Monitor

Analyzer

UtilitiesFS

Figure 2: Chopper components.

metrics such as number of data extents, layout score (frac-
tion of contiguous blocks) [42], and normalized versions
of each metric (e.g. d-span/ideal d-span). One can even
create a metric by plugging in a disk model to measure
quality. Our diagnostic framework works with all of these
metrics, each of which allows us to view the system from
a different angle. However, d-span has the best trade-off
between information gain and simplicity.

2.4 Implementation
The components of Chopper are presented in Figure 2.
The Manager builds an experimental plan and conducts
the plan using the other components. The FS Manipu-
lator prepares the file system for subsequent workloads.
In order to speed up the experiments, the file system is
mounted on an in-memory virtual disk, which is imple-
mented as a loop-back device backed by a file in a RAM
file system. The initial disk images are re-used whenever
needed, thus speeding up experimentation and provid-
ing reproducibility. After the image is ready, the Work-
load Generator produces a workload description, which
is then fed into the Workload Player for running. After
playing the workload, the Manager informs the FS Mon-
itor, which invokes existing system utilities, such as de-
bugfs and xfs db, to collect layout information. No kernel
changes are needed. Finally, layout information is merged
with workload and system information and fed into the
Analyzer. The experiment runs can be executed in paral-
lel to significantly reduce time.

3 The Tale of Tail
We use Chopper to help understand the policies of file
system block allocators, to achieve more predictable and
consistent data layouts, and to reduce the chances of per-
formance fluctuations. In this paper, we focus on Linux
ext4 [28] and XFS [41], which are among the most popu-
lar local file systems [2–4, 33].

For each file system, we begin in Section 3.1 by asking
whether or not it provides robust file layout in the pres-
ence of uncertain workloads. If the file system is robust
(i.e., XFS), then we claim success; however, if it is not
(i.e., ext4), then we delve further into understanding the
workload and environment factors that cause the unpre-
dictable layouts. Once we understand the combination of
factors that are problematic, in Section 3.2, we search for
the responsible policies in the file system source code and
improve those policies.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 8 16 24 32 40 48 56 64
d−span (GB)

C
um

ul
at

iv
e

D
en

si
ty

xfs−vanilla

ext4−vanilla

Figure 3: d-span CDFs of ext4 and XFS. The 90th%, 95th%,
and max d-spans of ext4 are 10GB, 20GB, and 63GB, respec-
tively. The 90th%, 95th%, and max d-spans of XFS are 2MB,
4MB, and 6GB, respectively.

CPUCount
FileCount

InternalDensity
UsedRatio

DirectorySpan
FreeSpaceLayout

Fsync
ChunkOrder

Sync
FileSize

DiskSize

0.0 0.2 0.4 0.6
Variance Contribution

Figure 4: Contribution to d-span variance. It shows contribu-
tions calculated by factor prioritization of sensitivity analysis.

3.1 File System as a Black Box
3.1.1 Does a Tail Exist?
The first question we ask is whether or not the file alloca-
tion policies in Linux ext4 and XFS are robust to the input
space introduced in Table 1.

To find out if there are tails in the resulting allocations,
we conducted experiments with 16384 runs using Chop-
per. The experiments were conducted on a cluster of
nodes with 16 GB RAM and two Opteron-242 CPUs [21].
The nodes ran Linux v3.12.5. Exploiting Chopper’s par-
allelism and optimizations, one full experiment on each
file system took about 30 minutes with 32 nodes.

Figure 3 presents the empirical CDF of the resulting d-
spans for each file system over all the runs; in runs with
multiple files, the reported d-span is the maximum d-span
of the allocated files. A large d-span value indicates a file
with poor locality. Note that the file sizes are never larger
than 256KB, so d-span with optimal allocation would be
only 256KB as well.

The figure shows that the CDF line for XFS is nearly
vertical; thus, XFS allocates files with relatively little vari-
ation in the d-span metric, even with widely differing
workloads and environmental factors. While XFS may
not be ideal, this CDF (as well as further experiments not
shown due to space constraints) indicates that its block
allocation policy is relatively robust.

In contrast, the CDF for ext4 has a significant tail.
Specifically, 10% of the runs in ext4 have at least one file
spreading over 10GB. This tail indicates instability in the
ext4 block allocation policy that could produce poor lay-
outs inducing long access latencies.

3.1.2 Which factors contribute to the tail?
We next investigate which workload and environment fac-
tors contribute most to the variation seen in ext4 layout.
Understanding these factors is important for two reasons.
First, it can help file system users to see which workloads
run best on a given file system and to avoid those which
do not run well; second, it can help file system developers
track down the source of internal policy problems.

The contribution of a factor to variation can be calcu-
lated by variance-based factor prioritization, a technique
in sensitivity analysis [38]. Specifically, the contribution
of factor Xi is calculated by:

Si =
VXi(EX∼i(Y |Xi = x∗

i))

V (Y)

Si is always smaller than 1 and reports the ratio of the
contribution by factor Xi to the overall variation. In more
detail, if factor Xi is fixed at a particular level x∗

i , then
EX∼i

(Y |Xi = x∗
i) is the resulting mean of response val-

ues for that level, VXi
(EX∼i

(Y |Xi = x∗
i)) is the variance

among level means of Xi, and V (Y) is the variance of all
response values for an experiment. Intuitively, Si indi-
cates how much changing a factor can affect the response.

Figure 4 presents the contribution of each factor for
ext4; again, the metric indicates the contribution of each
factor to the variation of d-span in the experiment. The
figure shows that the most significant factors are DiskSize,
FileSize, Sync, ChunkOrder, and Fsync; that is, changing
any one of those factors may significantly affect d-span
and layout quality. DiskSize is the most sensitive fac-
tor, indicating that ext4 does not have stable layout quality
with different disk sizes. It is not surprising that FileSize
affects d-span considering that the definition d-span de-
pends on the size of the file; however, the variance con-
tributed by FileSize (0.14 × V (dspanreal) = 3 × 1018)
is much larger than ideally expected (V (dspanideal) =
6 × 1010, dspanideal = FileSize). The significance of
Sync, ChunkOrder, and Fsync imply that certain write
patterns are much worse than others for ext4 allocator.

Factor prioritization gives us an overview of the impor-
tance of each factor and guides further exploration. We
would also like to know which factors and which levels of
a factor are most responsible for the tail. This can be de-
termined with factor mapping [38]; factor mapping uses
a threshold value to group responses (i.e., d-span values)
into tail and non-tail categories and finds the input space
of factors that drive the system into each category. We de-
fine the threshold value as the 90th% (10GB in this case)

0%

10%

20%

30%

 1

G
B

 2

G
B

 4

G
B

 8

G
B

 1

6G
B

 3

2G
B

 6

4G
B

(a) DiskSize

0%

10%

20%

30%

 8

K
B

 1

6K
B

 2

4K
B

 3

2K
B

 4

0K
B

 4

8K
B

 5

6K
B

 6

4K
B

 7

2K
B

 8

0K
B

 8

8K
B

 9

6K
B

10

4K
B

11

2K
B

12

0K
B

12

8K
B

13

6K
B

14

4K
B

15

2K
B

16

0K
B

16

8K
B

17

6K
B

18

4K
B

19

2K
B

20

0K
B

20

8K
B

21

6K
B

22

4K
B

23

2K
B

24

0K
B

24

8K
B

25

6K
B

(b) FileSize

0%

10%

20%

30%

 0

00
1

 0

01
1

 0

10
1

 0

11
1

 1

00
1

 1

01
1

 1

10
1

 1

11
1

(c) Sync

0%

10%

20%

30%

 0

12
3

 0

13
2

 0

21
3

 0

23
1

 0

31
2

 0

32
1

 1

02
3

 1

03
2

 1

20
3

 1

23
0

 1

30
2

 1

32
0

 2

01
3

 2

03
1

 2

10
3

 2

13
0

 2

30
1

 2

31
0

 3

01
2

 3

02
1

 3

10
2

 3

12
0

 3

20
1

 3

21
0

(d) ChunkOrder

0%

10%

20%

30%

 0

00
0

 0

00
1

 0

01
0

 0

01
1

 0

10
0

 0

10
1

 0

11
0

 0

11
1

 1

00
0

 1

00
1

 1

01
0

 1

01
1

 1

10
0

 1

10
1

 1

11
0

 1

11
1

(e) Fsync

0%

10%

20%

30%

 1

 2

 3

 4

 5

 6

(f) Freespacelayout

0%

10%

20%

30%

 0

 0
.2

 0

.4

 0
.6

(g) UsedRatio

0%

10%

20%

30%

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

(h) DirectorySpan

0%

10%

20%

30%

 0

.2

 0
.4

 0

.6

 0
.8

 1

 1
.2

 1

.4

 1
.6

 1

.8

 2

(i) InternalDensity

0%

10%

20%

30%

 1

 2

(j) FileCount

0%

10%

20%

30%

 1

 2

(k) CPUCount

Figure 5: Tail Distribution of 11 Factors. In the figure, we can find what levels of each factor have tail runs and percentage of
tail runs in each level. Regions with significantly more tail runs are marked bold. Note that the number of total runs of each level is
identical for each factor. Therefore, the percentages between levels of a factor are comparable. For example, (a) shows all tail runs
in the experiment have disk sizes ≥ 16GB. In addition, when DiskSize=16GB, 17% of runs are in the tail (d-span≥10GB) which
is less than DiskSize=32GB.

of all d-spans in the experiment. We say that a run is a tail
run if its response is in the tail category.

Factor mapping visualization in Figure 5 shows how the
tails are distributed to the levels of each factor. Thanks to
the balanced Latin hypercube design with large sample
size, the difference between any two levels of a factor is
likely to be attributed to the level change of this factor and
not due to chance.

Figure 5a shows that all tail runs lay on disk sizes over
8GB because the threshold d-span (10GB) is only possi-
ble when the disk size exceeds that size. This result im-
plies that blocks are spread farther as the capacity of the
disk increases, possibly due to poor allocation polices in
ext4. Figure 5b shows a surprising result: there are sig-
nificantly more tail runs when the file size is larger than
64KB. This reveals that ext4 uses very different block al-
location polices for files below and above 64KB.

Sync, ChunkOrder, and Fsync also present interesting
behaviors, in which the first written chunk plays an impor-
tant role in deciding the tail. Figure 5c shows that closing
and sync-ing after the first written chunk (coded 1***)
causes more tail runs than otherwise. Figure 5d shows that
writing chunk-0 of a file first (coded 0***), including se-
quential writes (coded 0123) which are usually preferred,
leads to more tail runs. Figure 5e shows that, on average,
not fsync-ing the first written chunk (coded 0***) leads to
more tail runs than otherwise.

The rest of the factors are less significant, but still reveal
interesting observations. Figure 5f and Figure 5g show
that tail runs are always present and not strongly corre-
lated with free space layout or the amount of free space,
even given the small file sizes in our workloads (below
256KB). Even with layout number 6 (not manually frag-
mented), there are still many tail runs. Similarly, hav-
ing more free spaces does not reduce tail cases. These
facts indicate that many tail runs do not depend on the
disk state and instead it is the ext4 block allocation policy
itself causing these tail runs. After we fix the ext4 allo-
cation polices in the next section, the DiskUsed and Free-
spaceLayout factors will have a much stronger impact.

Finally, Figure 5h and Figure 5i show that tail runs
are generally not affected by DirectorySpan and Internal-
Density. Figure 5j shows that having more files leads
to 29% more tail cases, indicating potential layout prob-
lems in production systems where multi-file operations
are common. Figure 5k shows that there are 6% more
tail cases when there are two CPUs.

3.1.3 Which factors interact in the tail?
In a complex system such as ext4 block allocator, perfor-
mance may depend on more than one factor. We have
inspected all two-factor interactions and select two cases
in Figure 6 that present clear patterns. The figures show
how pairwise interactions may lead to tail runs, reveal-

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

F
sy

nc
● ●With tail Without tail

(a) ChunkOrder and Fsync.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

8K
B

16
K

B
24

K
B

32
K

B
40

K
B

48
K

B
56

K
B

64
K

B
72

K
B

80
K

B
88

K
B

96
K

B
10

4K
B

11
2K

B
12

0K
B

12
8K

B
13

6K
B

14
4K

B
15

2K
B

16
0K

B
16

8K
B

17
6K

B
18

4K
B

19
2K

B
20

0K
B

20
8K

B
21

6K
B

22
4K

B
23

2K
B

24
0K

B
24

8K
B

25
6K

B

FileSize

F
sy

nc

● ●With tail Without tail

(b) FileSize and Fsync.
Figure 6: Tail Runs in the Interactions of Factors Note that
each interaction data point corresponds to multiple runs with
other factors varying. A black dot means that there is at least
one tail case in that interaction. Low-danger zones are marked
with bold labels.

ing both dangerous and low-danger zones in the work-
load space; these zones give us hints about the causes of
the tail, which will be investigated in Section 3.2. Fig-
ure 6a shows that, writing and fsync-ing chunk-3 first sig-
nificantly reduces tail cases. In Figure 6b, we see that,
for files not larger than 64KB, fsync-ing the first writ-
ten chunk significantly reduces the possibility of produc-
ing tail runs. These two figures do not conflict with each
other; in fact, they indicate a low-danger zone in a three-
dimension space.

Evaluating ext4 as black box, we have shown that ext4
does not consistently provide good layouts given diverse
inputs. Our results show that unstable performance with
ext4 is not due to the external state of the disk (e.g., frag-
mentation or utilization), but to the internal policies of
ext4. To understand and fix the problems with ext4 al-
location, we use detailed results from Chopper to guide
our search through ext4 documentation and source code.

3.2 File System as a White Box
Our previous analysis uncovered a number of problems
with the layout policies of ext4, but it did not pinpoint the
location of those policies within the ext4 source code. We
now use the hints provided by our previous data analysis
to narrow down the sources of problems and to perform

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 8 16 24 32 40 48 56 64
d−span (GB)

C
um

ul
at

iv
e

D
en

si
ty

Final

Vanilla

Figure 7: d-span CDF of vanilla and final versions of ext4.
The final version reduces the 80th, 90th, and 99th percentiles by
1.0× 103, 1.6× 103, and 24 times, respectively.

●
●

●
●
●

●

●

●
●

●

●
●

●
●
●

●
●

●
●
●

●

●

●
●

●

1MB

4MB

16MB

64MB

256MB

1GB

4GB

16GB

64GB

V
an

ill
a

!S
D

!S
E

!S
G

!N
B

d−
sp

an
 (

lo
g

sc
al

e)

●
●
●
●
●

99th%
95th%
90th%
85th%
80th%

(a) Effect of Single Fix

●●

●

●●●
●

●
●
●

●
●

●
●
●

●

●

●
●

●

●

●

●
●●

1MB

4MB

16MB

64MB

256MB

1GB

4GB

16GB

64GB

V
an

ill
a

!S
D

!(
S

D
 |

S
E

)

!(
S

D
 |

S
E

 |
S

G
)

!(
S

D
 |

S
E

 |
S

G
 |

N
B

)

d−
sp

an
 (

lo
g

sc
al

e)

(b) Cumulative Effect of Fixes

Figure 8: Effect of fixing issues. Vanilla: Linux v3.12.5. “!”
means “without”. SD: Scheduler Dependency; SE: Special End;
SG: Shared Goal; NB: Normalization Bug. !(X |Y) means X and
Y are both removed in this version.

detailed source code tracing given the set of workloads
suggested by Chopper. In this manner, we are able to fix
a series of problems in the ext4 layout policies and show
that each fix reduces the tail cases in ext4 layout.

Figure 7 compares the original version of ext4 and our
final version that has four sources of layout variation re-
moved. We can see that the fixes significantly reduce the
size of the tail, providing better and more consistent lay-
out quality. We now connect the symptoms of problems
shown by Chopper to their root causes in the code.

3.2.1 Randomness→ Scheduler Dependency
Our first step is to remove non-determinism for experi-
ments with the same treatment. Our previous experiments
corresponded to a single run for each treatment; this ap-
proach was acceptable for summarizing from a large sam-
ple space, but cannot show intra-treatment variation. Af-
ter we identify and remove this intra-treatment variation,
it will be more straightforward to remove other tail effects.

We conducted two repeated experiments with the same
input space as in Table 1 and found that 6% of the runs
have different d-spans for the same treatment; thus, ext4
can produce different layouts for the same controlled in-
put. Figure 9a shows the distribution of the d-span differ-
ences for those 6% of runs. The graph indicates that the
physical data layout can differ by as much as 46GB for
the same workload.

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 28 32 36 40 44
d−span difference (GB)

C
um

ul
at

iv
e

D
en

si
ty

(b)
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1

2

8K
B

16
K

B
24

K
B

32
K

B
40

K
B

48
K

B
56

K
B

64
K

B
72

K
B

80
K

B
88

K
B

96
K

B
10

4K
B

11
2K

B
12

0K
B

12
8K

B
13

6K
B

14
4K

B
15

2K
B

16
0K

B
16

8K
B

17
6K

B
18

4K
B

19
2K

B
20

0K
B

20
8K

B
21

6K
B

22
4K

B
23

2K
B

24
0K

B
24

8K
B

25
6K

B

FileSize

C
P

U
C

ou
nt

0 30 60 90 120

(c)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0123
0132
0213
0231
0312
0321
1023
1032
1203
1230
1302
1320
2013
2031
2103
2130
2301
2310
3012
3021
3102
3120
3201
3210

8K
B

16
K

B
24

K
B

32
K

B
40

K
B

48
K

B
56

K
B

64
K

B
72

K
B

80
K

B
88

K
B

96
K

B
10

4K
B

11
2K

B
12

0K
B

12
8K

B
13

6K
B

14
4K

B
15

2K
B

16
0K

B
16

8K
B

17
6K

B
18

4K
B

19
2K

B
20

0K
B

20
8K

B
21

6K
B

22
4K

B
23

2K
B

24
0K

B
24

8K
B

25
6K

B

FileSize

C
hu

nk
O

rd
er

0 5 10

Figure 9: Symptoms of Randomness. (a): CDF of d-span
variations between two experiments. The median is 1.9MB.
The max is 46GB. (b): Number of runs with changed d-span,
shown as the interaction of FileSize and CPUCount. (c): Num-
ber of runs with changed d-span, shown as the interaction of
FileSize and ChunkOrder. Regions with considerable tail runs
are marked with bold labels.

Examining the full set of factors responsible for this
variation, we found interesting interactions between File-
Size, CPUCount, and ChunkOrder. Figure 9b shows the
count of runs in which d-span changed between identi-
cal treatments as a function of CPUCount and FileSize.
This figure gives us the hint that small files in multiple-
CPU systems may suffer from unpredictable layouts. Fig-
ure 9c shows the number of runs with changed d-span as
a function of ChunkOrder and FileSize. This figure in-
dicates that most small files and those large files written
with more sequential patterns are affected.

Root Cause: With these symptoms as hints we focused
on the interaction between small files and the CPU sched-
uler. Linux ext4 has an allocation policy such that files
not larger than 64KB (small files) are allocated from lo-
cality group (LG) preallocations; further, the block allo-
cator associates each LG preallocation with a CPU, in or-
der to avoid contention. Thus, for small files, the layout
location is based solely on which CPU the flusher thread
is running. Since the flusher thread can be scheduled on
different CPUs, the same small file can use different LG
preallocations spread across the entire disk.

This policy is also the cause of the variation seen by
some large files written sequentially: large files written
sequentially begin as small files and are subject to LG pre-
allocation; large files written backwards have large sizes
from the beginning and never trigger this scheduling de-
pendency1. In production systems with heavy loads, more
cores, and more files, we expect more unexpected poor
layouts due to this effect.

Fix: We remove the problem of random layout by
choosing the locality group for a small file based on its i-
number range instead of the CPU. Using the i-number not
only removes the dependency on the scheduler, but also
ensures that small files with close i-numbers are likely to
be placed close together. We refer to the ext4 version with
this new policy as !SD, for no Scheduler Dependency.

Figure 8a compares vanilla ext4 and !SD. The graph
shows that the new version slightly reduces the size of
the tail. Further analysis shows that in total d-span is re-
duced by 1.4 TB in 7% of the runs but is increased by
0.8 TB in 3% of runs. These mixed results occur because
this first fix unmasks other problems which can lead to
larger d-spans. In complex systems such as ext4, perfor-
mance problems interact in surprising ways; we will pro-
gressively work to remove three more problems.

3.2.2 Allocating Last Chunk→ Special End
We now return to the interesting behaviors originally
shown in Figure 6a, which showed that allocating chunk-3
first (Fsync=1*** and ChunkOrder=3***) helps to avoid
tail runs. To determine the cause of poor allocations, we
compared traces from selected workloads in which a tail
occurs to similar workloads in which tails do not occur.

Root Cause: Linux ext4 uses a Special End policy to
allocate the last extent of a file when the file is no longer
open; specifically, the last extent does not trigger preallo-
cation. The Special End policy is implemented by check-
ing three conditions - Condition 1: the extent is at the end
of the file; Condition 2: the file system is not busy; Con-
dition 3: the file is not open. If all conditions are satisfied,
this request is marked with the hint “do not preallocate”,
which is different from other parts of the file2.

The motivation is that, since the status of a file is final
(i.e., no process can change the file until the next open),
there is no need to reserve additional space. While this
motivation is valid, the implementation causes an incon-
sistent allocation for the last extent of the file compared
to the rest; the consequence is that blocks can be spread

1Note that file size in ext4 is calculated by the ending logical block
number of the file, not the sum of physical blocks occupied.

2In fact, this hint is vague. It means: 1. if there is a preallocation
solely for this file (i.e., i-node preallocation), use it; 2. do not use
LG preallocations, even they are available 3. do not create any new
preallocations.

0

100

200

300

400

500

8K
B

64
KB

72
K
B

25
6K
B

C
ou
nt

Reduced Unchanged Increased

0

500

1000

1500

2000

00
01

00
11

01
01

01
11

10
01

10
11

11
01

11
11

C
ou

nt

(a) Sync

0

100

200

300

400

500

8K
B

64
K

B
72

K
B

25
6K

B

C
ou

nt

(b) FileSize

0

500

1000

1500

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

C
ou

nt

(c) InternalDensity

Figure 10: Effects of removing problematic policies. The d-
spans could be ‘Reduced’, ‘Unchanged’ or ‘Increased’ due to
the removal. (a): removing Special End; (b) and (c): removing
Shared Global.

far apart. For example, a small file may be inadvertently
split because non-ending extents are allocated with LG
preallocations while the ending extent is not; thus, these
conflicting policies drag the extents of the file apart.

This policy explains the tail-free zone (Fsync=1*** and
ChunkOrder=3***) in Figure 6a. In these tail-free zones,
the three conditions cannot be simultaneously satisfied
since fsync-ing chunk-3 causes the last extent to be al-
located, while the file is still open; thus, the Special End
policy is not triggered.

Fix: To reduce the layout variability, we have removed
the Special End policy from ext4; in this version named
!SE, the ending extent is treated like all other parts of the
file. Figure 8 shows that !SE reduces the size of the tail.
Further analysis of the results show that removing Special
End policy reduces d-spans for 32% of the runs by a to-
tal of 21TB, but increases d-spans for 14% of the runs by
a total of 9TB. The increasing of d-span is primarily be-
cause removing this policy unmasks inconsistent policies
in File Size Dependency, which we will discuss next.

Figure 10a examines the benefits of the !SE policy com-
pared to vanilla ext4 in more detail; to compare only de-
terministic results, we set CPUCount=1. The graph shows
that the !SE policy significantly reduces tail runs when
the workload begins with sync operations (combination
of close(), sync(), and open()); this is because
the Special End policy is more likely to be triggered when
the file is temporarily closed.

3.2.3 File Size Dependency→ Shared Global
After removing the Scheduler Dependency and Special
End policies, ext4 layout still presents a significant tail.
Experimenting with these two fixes, we observe a new
symptom that occurs due to the interaction of FileSize
and ChunkOrder, as shown in Figure 11. The stair shape
of the tail runs across workloads indicates that this pol-
icy only affects large files and it depends upon the first
written chunk.

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

8KB

64KB
72KB

128KB

256KB

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

F
ile

S
iz

e

● ●With tail Without tail

Figure 11: Tail Runs in !(SD|SE). The figure shows tail runs
in the interaction of ChunkOrder and FileSize, after removing
Scheduler Dependency and Special End.

Root Cause: Traces of several representative data
points reveal the source of the ‘stair’ symptom, which we
call File Size Dependency. In ext4, one of the design goals
is to place small files (less than 64KB, which is tunable)
close and big files apart [7]. Blocks for small files are al-
located from LG preallocations, which are shared by all
small files; blocks in large files are allocated from per-
file inode preallocations (except for the ending extent of
a closed file, due to the Special End policy).

This file-size-dependant policy ignores the activeness
of files, since the dynamically changing size of a file may
trigger inconsistent allocation policies for the same file.
In other words, blocks of a file larger than 64KB can
be allocated with two distinct policies as the file grows
from small to large. This changing policy explains why
FileSize is the most significant workload factor, as seen
in Figure 4, and why Figure 5b shows such a dramatic
change at 64KB.

Sequential writes are likely to trigger this problem. For
example, the first 36KB extent of a 72KB file will be al-
located from the LG preallocation; the next 36KB extent
will be allocated from a new i-node preallocation (since
the file is now classified as large with 72KB > 64KB).
The allocator will try to allocate the second extent next to
the first, but the preferred location is already occupied by
the LG preallocation; the next choice is to use the block
group where the last big file in the whole file system was
allocated (Shared Global policy, coded SG), which can
be far away. Growing a file often triggers this problem.
File Size Dependency is the reason why runs with Chunk-
Order=0*** in Figure 5d and Figure 11 have relatively
more tail runs than other orders. Writing Chunk-0 first
makes the file grow from a small size and increases the
chance of triggering two distinct policies.

Fix: Placing extents of large files together with a
shared global policy violates the initial design goal of
placing big files apart and deteriorates the consequences
of File Size Dependency. To mitigate the problem, we
implemented a new policy (coded !SG) that tries to place

● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●
● ●

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

01
23

01
32

02
13

02
31

03
12

03
21

10
23

10
32

12
03

12
30

13
02

13
20

20
13

20
31

21
03

21
30

23
01

23
10

30
12

30
21

31
02

31
20

32
01

32
10

ChunkOrder

In
te

rn
al

D
en

si
ty

● ●With tail Without tail

Figure 12: Tail Runs in !(SD|SE|SG). This figure shows tail
runs in the interaction of ChunkOrder and InternalDensity on
version !(SD|SE|SG).

extents of large files close to existing extents of that file.
Figure 8a shows that !SG significantly reduces the size of
the tail. In more detail, !SG reduces d-span in 35% of the
runs by a total of 45TB.

To demonstrate the effectiveness of the !SG version, we
compare the number of tail cases with it and vanilla ext4
for deterministic scenarios (CPUCount=1). Figure 10b
shows that the layout of large files (>64KB) is signifi-
cantly improved with this fix. Figure 10c shows that the
layout of sparse files (with InternalDensity < 1) is also
improved; the new policy is able to separately allocate
each extent while still keeping them near one another.

3.2.4 Sparse Files→ Normalization Bug
With three problems fixed in version !(SD|SE|SG), we
show an interesting interaction that still remains between
ChunkOrder and InternalDensity. Figure 12 shows that
while most of the workloads exhibit tails, several work-
loads do not, specifically, all “solid” (InternalDensity≥1)
files with ChunkOrder=3012. To identify the root cause,
we focus only on workloads with ChunkOrder=3012 and
compare solid and sparse patterns.

Root Cause: Comparing solid and sparse runs with
ChunkOrder=3012 shows that the source of the tail is
a bug in ext4 normalization; normalization enlarges re-
quests so that the extra space can be used for a similar
extent later. The normalization function should update
the request’s logical starting block number, correspond-
ing physical block number, and size; however, with the
bug, the physical block number is not updated and the old
value is used later for allocation3.

Figure 13 illustrates how this bug can lead to poor lay-
out. In this scenario, an ill-normalized request is started
(incorrectly) at the original physical block number, but
is of a new (correct) larger size; as a result, the request
will not fit in the desired gap within this file. Therefore,
ext4 may fail to allocate blocks from preferred locations

3This bug is present even in the currently latest version of Linux,
Linux v3.17-rc6. It has been confirmed by an ext4 developer and is
waiting for further tests.

existing extentoriginal request

normalized request (incorrect)

normalized request (expected)

disk

file

x

Figure 13: Ill Implementation of Request Normalization. In
this case, the normalized request overlaps with the existing ex-
tent of the file, making it impossible to fulfill the request at the
preferred location.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

8K
B

16
K

B
24

K
B

32
K

B
40

K
B

48
K

B
56

K
B

64
K

B
72

K
B

80
K

B
88

K
B

96
K

B
10

4K
B

11
2K

B
12

0K
B

12
8K

B
13

6K
B

14
4K

B
15

2K
B

16
0K

B
16

8K
B

17
6K

B
18

4K
B

19
2K

B
20

0K
B

20
8K

B
21

6K
B

22
4K

B
23

2K
B

24
0K

B
24

8K
B

25
6K

B

FileSize

In
te

rn
al

D
en

si
ty

0

10

20

30

40

Figure 14: Impact of Normalization Bug. This figure shows
the count of runs affected by Normalization Bug in the interac-
tion of FileSize and InternalDensity. The count is obtained by
comparing experimental results ran with and without the bug.

and will perform a desperate search for free space else-
where, spreading blocks. The solid files with ChunkOrder
of 3012 in Figure 12 avoid this bug because if chunks-
0,1,2 are written sequentially after chunk-3 exists, then
the physical block number of the request does not need to
be updated.

Fix: We fix the bug by correctly updating the physi-
cal starting block of the request in version !NB. Figure 14
shows that large files were particularly susceptible to this
bug, as were sparse files (InternalDensity < 1). Fig-
ure 8a shows that fixing this bug reduces the tail cases, as
desired. In more detail, !NB reduces d-span for 19% of
runs by 8.3 TB in total. Surprisingly, fixing the bug in-
creases d-span for 5% of runs by 1.5 TB in total. Trace
analysis reveals that, by pure luck, the mis-implemented
normalization sometimes sets the request to nearby space
which happened to be free, while the correct request fell
in space occupied by another file; thus, with the correct
request, ext4 sometimes performs a desperate search and
chooses a more distant location.

Figure 8 summarizes the benefits of these four fixes.
Overall, with all four fixes, the 90th-percentile for d-span
values is dramatically reduced from well over 4GB to
close to 4MB. Thus, as originally shown in Figure 7, our
final version of ext4 has a much less significant tail than
the original ext4.

3.3 Latencies Reduced
Chopper uses d-span as a diagnostic signal to find prob-
lematic block allocator designs that produce poor data lay-
outs. The poor layouts, which incur costly disk seeks on
HDDs [36], garbage collections on SSDs [11] and even

1 file 10 files

● ● ● ●
●

●

●

●

● ● ● ●● ● ● ●

● ● ● ●

●

●

●

●

● ● ● ●●

●

●

●

0

100

200

300

0

500

1000

1500

R
ead

W
rite

2 4 8 16 2 4 8 16
Number of Creating Threads

A
cc

es
s

T
im

e
(m

s)
Version: !SD SD

Figure 15: Latency Reduction. This figure shows that !SD
significantly reduces average data access time comparing with
SD. All experiments were repeated 5 times. Standard errors are
small and thus hidden for clarity.

CPU spikes [1], can in turn result in long data access la-
tencies. Our repairs based on Chopper’s findings reduce
latencies caused by the problematic designs.

For example, Figure 15 demonstrates how Scheduler
Dependency incurs long latencies and how our repaired
version, !SD, reduces latencies on an HDD (Hitachi
HUA723030ALA640: 3.0 TB, 7200 RPM). In the exper-
iment, files were created by multiple creating threads re-
siding on different CPUs; each of the threads wrote a part
of a 64KB file. We then measured file access time by
reading and over-writing with one thread, which avoids
resource contentions and maximizes performance. To ob-
tain application-disk data transfer performance, OS and
disk cache effects were circumvented. Figure 15 shows
that with the SD version, access time increases with more
creating threads because SD splits each file into more and
potentially distant physical data pieces. Our fixed version,
!SD, reduced read and write time by up to 67 and 4 times
proportionally, and by up to 300 and 1400 ms. The reduc-
tions in this experiment, as well as expected greater ones
with more creating threads and files, are significant – as
a comparison, a round trip between US and Europe for a
network packet takes 150 ms and a round trip within the
same data center takes 0.5 ms [22, 32]. The time increase
caused by Scheduler Dependency, as well as other issues,
may translate to long latencies in high-level data center
operations [17]. Chopper is able to find such issues, lead-
ing to fixes reducing latencies.

3.4 Discussion
With the help of exploratory data analysis, we have found
and removed four issues in ext4 that can lead to unex-
pected tail latencies; these issues are summarized in Ta-
ble 2. We have made the patches for these issues publicly
available with Chopper.

While these fixes do significantly reduce the tail behav-
iors, they have several potential limitations. First, with-
out the Scheduler Dependency policy, flusher threads run-

Issue Description

Scheduler Dependency Choice of preallocation group for small files
depends on CPU of flushing thread.

Special End The last extent of a closed file may be rejected
to allocate from preallocated spaces.

File Size Dependency Preferred target locations depend on file size
which may dynamically change.

Normalization Bug Block allocation requests for large files are not
correctly adjusted, causing the allocator to ex-
amine mis-aligned locations for free space.

Table 2: Linux ext4 Issues. This table summarizes issues we
have found and fixed.

ning on different CPUs may contend for the same preal-
location groups. We believe that the contention degree
is acceptable, since allocation within a preallocation is
fast and files are distributed across many preallocations;
if contention is found to be a problem, more prealloca-
tions can be added (the current ext4 creates preallocations
lazily, one for each CPU). Second, removing the Shared
Global policy mitigates but does not eliminate the layout
problem for files with dynamically changing sizes; choos-
ing policies based on dynamic properties such as file size
is complicated and requires more fundamental policy re-
visions. Third, our final version, as shown in Figure 7,
still contains a small tail. This tail is due to the disk state
(DiskUsed and FreespaceLayout); as expected, when the
file system is run on a disk that is more heavily used and
is more fragmented, the layout for new files suffers.

The symptoms of internal design problems revealed by
Chopper drive us to reason about their causes. In this pro-
cess, time-consuming tracing is often necessary to pin-
point a particular problematic code line as the code makes
complex decisions based on environmental factors. For-
tunately, analyzing and visualizing the data sets produced
by Chopper enabled us to focus on several representative
runs. In addition, we can easily reproduce and trace any
runs in the controlled environmental provided by Chop-
per, without worrying about confounding noises.

With Chopper, we have learned several lessons from
our experience with ext4 that may help build file sys-
tems that are robust to uncertain workload and environ-
mental factors in the future. First, policies for different
circumstances should be harmonious with one another.
For example, ext4 tries to optimize allocation for differ-
ent scenarios and as a result has a different policy for each
case (e.g., the ending extent, small and large files); when
multiple policies are triggered for the same file, the poli-
cies conflict and the file is dragged apart. Second, poli-
cies should not depend on environmental factors that may
change and are outside the control of the file system. In
contrast, data layout in ext4 depends on the OS scheduler,
which makes layout quality unpredictable. By simplifying
the layout policies in ext4 to avoid special cases and to be
independent of environmental factors, we have shown that
file layout is much more compact and predictable.

4 Related Work
Chopper is a comprehensive diagnostic tool that provides
techniques to explore file system block allocation designs.
It shares similarities and has notable differences with tra-
ditional benchmarks and with model checkers.

File system benchmarks have been criticized for
decades [44–46]. Many file system benchmarks target
many aspects of file system performance and thus include
many factors that affect the results in unpredictable ways.
In contrast, Chopper leverages well-developed statistical
techniques [37,38,48] to isolate the impact of various fac-
tors and avoid noise. With its sole focus on block allo-
cation, Chopper is able to isolate its behavior and reveal
problems with data layout quality.

The self-scaling I/O benchmark [14] is similar to Chop-
per, but the self-scaling benchmark searches a five-
dimension workload parameter space by dynamically ad-
justing one parameter at a time while keeping the rest
constant; its goal is to converge all parameters to values
that uniformly achieve a specific percentage of max per-
formance, which is called a focal point. This approach
was able to find interesting behaviors, but it is limited and
has several problems. First, the experiments may never
find such a focal point. Second, the approach is not feasi-
ble given a large number of parameters. Third, changing
one parameter at a time may miss interesting points in the
space and interactions between parameters. In contrast,
Chopper has been designed to systematically extract the
maximum amount of information from limited runs.

Model checking is a verification process that explores
system state space [16]; it has also been used to diagnose
latent performance bugs. For example, MacePC [27] can
identify bad performance and pinpoint the causing state.
One problem with this approach is that it requires a sim-
ulation which may not perfectly match the desired imple-
mentation. Implementation-level model checkers, such
as FiSC [50], address this problem by checking the ac-
tual system. FiSC checks a real Linux kernel in a cus-
tomized environment to find file system bugs; however,
FiSC needs to run the whole OS in the model checker and
intercept calls. In contrast, Chopper can run in an unmod-
ified, low-overhead environment. In addition, Chopper
explores the input space differently; model checkers con-
sider transitions between states and often use tree search
algorithms, which may have clustered exploration states
and leave gaps unexplored. In Chopper, we precisely de-
fine a large number of factors and ensure the effects and
interactions of these factors are evenly explored by statis-
tical experimental design [29, 37, 38, 48].

5 Conclusions
Tail behaviors have high consequences and cause unex-
pected system fluctuations. Removing tail behaviors will
lead to a system with more consistent performance. How-

ever, identifying tails and finding their sources are chal-
lenging in complex systems because the input space can
be infinite and exhaustive search is impossible. To study
the tails of block allocation in XFS and ext4, we built
Chopper to facilitate carefully designed experiments to
effectively explore the input space of more than ten fac-
tors. We used Latin hypercube design and sensitivity
analysis to uncover unexpected behaviors among many of
those factors. Analysis with Chopper helped us pinpoint
and remove four layout issues in ext4; our improvements
significantly reduce the problematic behaviors causing tail
latencies. We have made Chopper and ext4 patches pub-
licly available.

We believe that the application of established statisti-
cal methodologies to system analysis can have a tremen-
dous impact on system design and implementation. We
encourage developers and researchers alike to make sys-
tems amenable to such experimentation, as experiments
are essential in the analysis and construction of robust sys-
tems. Rigorous statistics will help to reduce unexpected
issues caused by intuitive but unreliable design decisions.

Acknowledgments
We thank the anonymous reviewers and Angela Demke
Brown (our shepherd) for their excellent feedback. This
research was supported by the United States Department
of Defense, NSF grants CCF-1016924, CNS-1421033,
CNS-1319405, CNS-1218405, CNS-1042537, and CNS-
1042543 (PRObE http://www.nmc-probe.org/), as well as
generous donations from Amazon, Cisco, EMC, Face-
book, Fusion-io, Google, Huawei, IBM, Los Alamos Na-
tional Laboratory, Microsoft, NetApp, Samsung, Sony,
Symantec, and VMware. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of DOD, NSF, or other institutions.

References
[1] Btrfs Issues. https://btrfs.wiki.kernel.

org/index.php/Gotchas.

[2] NASA Archival Storage System. http:
//www.nas.nasa.gov/hecc/resources/
storage_systems.html.

[3] Red Hat Enterprise Linux 7 Press Release. http:
//www.redhat.com/en/about/press-
releases/red-hat-unveils-rhel-7.

[4] Ubuntu. http://www.ubuntu.com.

[5] Nitin Agrawal, William J. Bolosky, John R.
Douceur, and Jacob R. Lorch. A Five-Year Study
of File-System Metadata. In Proceedings of the

5th USENIX Symposium on File and Storage Tech-
nologies (FAST ’07), San Jose, California, February
2007.

[6] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Balaji Prabhakar, Amin Vahdat, and Masato Ya-
suda. Less Is More: Trading a Little Bandwidth
for Ultra-Low Latency in the Data Center. In Pre-
sented as part of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
12), pages 253–266, San Jose, CA, 2012. USENIX.

[7] KV Aneesh Kumar, Mingming Cao, Jose R Santos,
and Andreas Dilger. Ext4 block and inode allocator
improvements. In Proceedings of the Linux Sympo-
sium, volume 1, pages 263–274, 2008.

[8] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 0.8 edition, 2014.

[9] Mary Baker, John Hartman, Martin Kupfer, Ken
Shirriff, and John Ousterhout. Measurements of a
Distributed File System. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles
(SOSP ’91), pages 198–212, Pacific Grove, Califor-
nia, October 1991.

[10] Al Bessey, Ken Block, Ben Chelf, Andy Chou,
Bryan Fulton, Seth Hallem, Charles Henri-Gros,
Asya Kamsky, Scott McPeak, and Dawson Engler.
A Few Billion Lines of Code Later: Using Static
Analysis to Find Bugs in the Real World. Commu-
nications of the ACM, February 2010.

[11] Luc Bouganim, Björn Thór Jónsson, Philippe Bon-
net, et al. uFLIP: Understanding flash IO patterns. In
4th Biennial Conference on Innovative Data Systems
Research (CIDR), pages 1–12, 2009.

[12] Rob Carnell. lhs package manual. http:
//cran.r-project.org/web/packages/
lhs/lhs.pdf.

[13] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System
Implications of Flash Memory Based Solid State
Drives. In Proceedings of the Eleventh International
Joint Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’09, pages 181–
192, New York, NY, USA, 2009. ACM.

[14] Peter M. Chen and David A. Patterson. A New Ap-
proach to I/O Performance Evaluation–Self-Scaling
I/O Benchmarks, Predicted I/O Performance. In
Proceedings of the 1993 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer

Systems (SIGMETRICS ’93), pages 1–12, Santa
Clara, California, May 1993.

[15] Vijay Chidambaram, Thanumalayan Sankara-
narayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash
Consistency. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 228–243, 2013.

[16] Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model checking. MIT press, 1999.

[17] Jeffrey Dean and Luiz André Barroso. The tail at
scale. Communications of the ACM, 56(2):74–80,
2013.

[18] Nykamp DQ. Mean path length definition.
http://mathinsight.org/network_
mean_path_length_definition.

[19] Dawson Engler and Madanlal Musuvathi. Static
Analysis versus Software Model Checking for Bug
Finding. In 5th International Conference Verifica-
tion, Model Checking and Abstract Interpretation
(VMCAI ’04), Venice, Italy, January 2004.

[20] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google File System. In Proceedings
of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), pages 29–43, Bolton Land-
ing, New York, October 2003.

[21] Garth Gibson, Gary Grider, Andree Jacobson, and
Wyatt Lloyd. PRObE: A Thousand-Node Exper-
imental Cluster for Computer Systems Research.
USENIX ;login:, 38(3), June 2013.

[22] Brendan Gregg. Systems Performance: Enterprise
and the Cloud, page 20. 2013.

[23] Tyler Harter, Chris Dragga, Michael Vaughn, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A file is not a file: understanding the I/O
behavior of Apple desktop applications. In Proceed-
ings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, pages 71–83. ACM, 2011.

[24] Jon C. Helton and Freddie J. Davis. Latin hypercube
sampling and the propagation of uncertainty in anal-
yses of complex systems. Reliability Engineering &
System Safety, 81(1):23–69, 2003.

[25] Ronald L. Iman, Jon C. Helton, and James E. Camp-
bell. An approach to sensitivity analysis of computer
models. Part I - Introduction, Input, Variable Selec-
tion and Preliminary Variable Assessment. Journal
of Quality Technology, 13:174–183, 1981.

[26] Keren Jin and Ethan L. Miller. The Effectiveness of
Deduplication on Virtual Machine Disk Images. In
Proceedings of SYSTOR 2009: The Israeli Exper-
imental Systems Conference, SYSTOR ’09, pages
7:1–7:12, 2009.

[27] Charles Killian, Karthik Nagaraj, Salman Pervez,
Ryan Braud, James W. Anderson, and Ranjit Jhala.
Finding Latent Performance Bugs in Systems Imple-
mentations. In Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’10, pages 17–26,
New York, NY, USA, 2010. ACM.

[28] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Alex Tomas Andreas Dilge and, and Lau-
rent Vivier. The New Ext4 filesystem: Current Status
and Future Plans. In Ottawa Linux Symposium (OLS
’07), Ottawa, Canada, July 2007.

[29] Michael D. McKay, Richard J. Beckman, and
William J. Conover. Comparison of three methods
for selecting values of input variables in the analy-
sis of output from a computer code. Technometrics,
21(2):239–245, 1979.

[30] Changwoo Min, Kangnyeon Kim, Hyunjin Cho,
Sang-Won Lee, and Young Ik Eom. SFS: ran-
dom write considered harmful in solid state drives.
In Proceedings of the 10th USENIX conference on
File and Storage Technologies. USENIX Associa-
tion, 2012.

[31] V. N. Nair, D. A. James, W. K. Ehrlich, and J. Zeval-
los. A statistical assessment of some software test-
ing strategies and application of experimental design
techniques. Statistica Sinica, 8(1):165–184, 1998.

[32] Peter Norvig. Teach Yourself Programming in
Ten Years. http://norvig.com/21-days.
html.

[33] Ryan Paul. Google upgrading to Ext4.
arstechnica.com/information-
technology/2010/01/google-
upgrading-to-ext4-hires-former-
linux-foundation-cto/.

[34] Zachary N. J. Peterson. Data Placement for Copy-
on-write Using Virtual Contiguity. Master’s thesis,
U.C. Santa Cruz, 2002.

[35] Drew Roselli, Jacob R. Lorch, and Thomas E. An-
derson. A Comparison of File System Workloads.
In Proceedings of the USENIX Annual Technical
Conference (USENIX ’00), pages 41–54, San Diego,
California, June 2000.

[36] Chris Ruemmler and John Wilkes. An Introduction
to Disk Drive Modeling. IEEE Computer, 27(3):17–
28, March 1994.

[37] Jerome Sacks, William J Welch, Toby J Mitchell,
and Henry P Wynn. Design and analysis of com-
puter experiments. Statistical science, pages 409–
423, 1989.

[38] Andrea Saltelli, Marco Ratto, Terry Andres,
Francesca Campolongo, Jessica Cariboni, Debora
Gatelli, Michaela Saisana, and Stefano Tarantola.
Global sensitivity analysis: the primer. John Wiley
& Sons, 2008.

[39] Andrea Saltelli, Stefano Tarantola, Francesca Cam-
polongo, and Marco Ratto. Sensitivity analysis in
practice: a guide to assessing scientific models.
John Wiley & Sons, 2004.

[40] Thomas J Santner, Brian J Williams, and William
Notz. The design and analysis of computer experi-
ments. Springer, 2003.

[41] SGI. XFS Filesystem Structure. http:
//oss.sgi.com/projects/xfs/papers/
xfs_filesystem_structure.pdf.

[42] Keith A. Smith and Margo I. Seltzer. File System
Aging – Increasing the Relevance of File System
Benchmarks. In Proceedings of the 1997 ACM SIG-
METRICS International Conference on Measure-
ment and Modeling of Computer Systems, SIGMET-
RICS ’97, pages 203–213, New York, NY, USA,
1997. ACM.

[43] IM Soboĺ. Quasi-Monte Carlo methods. Progress in
Nuclear Energy, 24(1):55–61, 1990.

[44] Diane Tang and Margo Seltzer. Lies, damned lies,
and file system benchmarks. VINO: The 1994 Fall
Harvest, 1994.

[45] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and
Margo Seltzer. Benchmarking File System Bench-
marking: It *IS* Rocket Science. In Proceedings of
the 13th USENIX Conference on Hot Topics in Oper-
ating Systems, HotOS’13, pages 9–9, Berkeley, CA,
USA, 2011. USENIX Association.

[46] Avishay Traeger, Erez Zadok, Nikolai Joukov, and
Charles P. Wright. A Nine Year Study of File System
and Storage Benchmarking. ACM Transactions on
Storage (TOS), 4(2), May 2008.

[47] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Dar-
rell D. E. Long, and Carlos Maltzahn. Ceph: A

Scalable, High-Performance Distributed File Sys-
tem. In Proceedings of the 7th Symposium on Op-
erating Systems Design and Implementation (OSDI
’06), Seattle, Washington, November 2006.

[48] CF Jeff Wu and Michael S Hamada. Experiments:
planning, analysis, and optimization, volume 552.
John Wiley & Sons, 2011.

[49] Yunjing Xu, Zachary Musgrave, Brian Noble, and
Michael Bailey. Bobtail: Avoiding Long Tails in the
Cloud. In NSDI, pages 329–341, 2013.

[50] Junfeng Yang, Paul Twohey, Dawson Engler, and
Madanlal Musuvathi. Using Model Checking to
Find Serious File System Errors. In Proceedings
of the 6th Symposium on Operating Systems De-
sign and Implementation (OSDI ’04), San Francisco,
California, December 2004.

[51] David Zats, Tathagata Das, Prashanth Mohan,
Dhruba Borthakur, and Randy Katz. DeTail: Re-
ducing the Flow Completion Time Tail in Datacen-
ter Networks. SIGCOMM Comput. Commun. Rev.,
42(4):139–150, August 2012.

