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Abstract cache quickly (with respect to wall-clock time).

Large caches in storage servers have become essential f&iven the increase in both the frequency and impact
meeting service levels required by applications. The@kcache warmup, we need to develeffectiveand effi-
caches need to be warmed with data often today duectentwarmup mechanisms. An effective mechanism will
various scenarios including dynamic creation of cacM&@rm the cache with data that will be used by the ap-
space and server restarts that clear cache contents. WHigation, thereby increasing the cache hit rate as com-
large storage caches are warmed at the rate of applicafiéfed to a cold cache being warmed through application
I/0, warmup can take hours or even days, thus affectigcess. The increased hit rate will improve the average
both application performance and server load over a lotg latency experienced by the application, as well as re-
period of time. duce /O load on backend storage. An efficient mecha-

We have created®onfire a mechanism for acce|erat.nism will use minimal overhead when monitoring work-
ing cache warmup. Bonfire monitors storage server wotRads for warmup-related characteristics and also place
loads, logs important warmup data, and efficiently pré&ss load on the storage backend during warmup process
loads storage-level caches with warmup data. Bonfire(gglledpre-load than on-demand warmup.
based on our detailed analysis of block-level data-centeNVe develop a mechanism called Bonfire to warm
traces that provides insights into heuristics for warmup s9rage-level caches effectively and efficiently. Bonfire
well as the potential for efficient mechanisms. We shdwonitors storage server workloads, logs valuable warmup
through both simulation and trace replay that Bonfire riaformation, and bulk loads warmup data to new caches.
duces both warmup time and backend server load signifi-creating Bonfire, we make three contributions.
cantly, compared to a cache that is warmed up on demandrirst, we analyze a variety of traces and quantify work-

. load characteristics that are important for cache warmup.
1 Introduction We find two primary patterns of block reaccesses: reac-
Caches are useful only when they contain data. Caci@&sses within an hour and daily reaccesses that happen at
warmup, the process of filling caches with data, has & same wall-clock time each day. We also find correla-
far received scant research attention since it occuri@ehs between spatial and temporal locality.
rarely and did not have a significant impact. Thus, cacheSecond, based on our trace analysis, we design a
warmup simply happens on-demand, that is, as the woskt of cache-warmup algorithms and show their benefit
load performs I/Os. Today, the frequency and the impabtough simulation. We also construct a decision tree of
of cache warmup are both changing. cache warmup heuristics based on the simulation results.

Cache warmup of server-side, or storage-level, cact¥e show that using the most-recently accessed data for
now occurs more often. For example, cache space is b@rmup provides the best general-case warmup effective-
ing created dynamically in order to improve applicationess. For episodic patterns, such as running a series of
performance [5] or reduce backend 1/O load [21]. Thesegression tests, using the data from the same time pe-
caches take time to become effective due to warmup [Bpd in the previous day provides the most effective cache
As another example, with increasing scale, many planngdrmup. If the cache workload is well understood, the
and unplanned restarts of storage nodes occur [14]; thadgcision tree can be used to determine the optimal cache
caches need to be warmed up after the restart. warmup approach.

Cache warmup also has a tremendous impact orThird, we implement and evaluate a prototype of Bon-
service-level agreements (SLAS) since storage-levelecadine that uses the most-recently accessed data for warmup.
space is now extremely large — typically hundreds of GBonfire has two options for recording information and
gabytes of DRAM and Terabytes of flash [12, 22, 23performing warmup -metadata-onlandmetadata+data
SLAs for performance and availability often use walMetadata-onlylogs only the LBAs (block addresses) that
clock time to define degraded mode [4]. Terabyte-sizade accessed, whileetadata+datalso logs the accessed
caches need a large number of I/Os to become waithata sequentially on a separate disk or SSD. In the former
When these 1/Os are issued on-demand at the rate of egse, Bonfire obtains the data for warmup from the back-
plication 1/0O, the rate may not be high enough to fill thend disk location. In the latter case, the data is read from



the logging device. The difference between the two oguickly and efficiently. After the restart, the system needs
tions is in the time taken for pre-load and in the overheal return quickly to the performance level it was at prior
for logging. We evaluate both options in our experiment® the restart. The storage-level cache space needs to be
With Bonfire, after warmup, we see an overall speedibpought back to the warm state before the level of perfor-
of up to 100% in warmup time (i.e., time until cache pemance is back to normal. Although persistent and durable
formance matches that of an “always-warm” cache) andching solutions do exist for flash-based caches, they
up to a 228% reduction in server load as compared to drave their own overheads and do not work for DRAM-
demand warmup. Meanwhile, Bonfire adds only smdihsed caches [26].
overhead to the storage system. Thetadata-onlyop- Server take-over: To handle server down time bet-
tion uses 256 KB of memory and up to 71 MB of logginger, a common technique used is pairing storage con-
device space. It also takes 3 to 20 minutes to pre-lomdllers with a shared set of disks in the backendigh-
warmup data. Thenetadata+dataption uses 128 MB of availability pairs In the event of a controller failure, the
memory and up to 36 GB of logging device space. It takeperational storage controller takes over the duties of the

2 to 11 minutes to pre-load warmup data. failed controller. This approach is also useful for provid-
ing non-disruptive controller upgrades and maintenance.
2 Storage-level Cache Warmup Storage-level cache warmup is an important issue in the

Caches have been used in storage systems for a long tifi@h-availability scenario as well. The storage-levelzac
research in storage caching has also addressed a val@ggted in the operational storage controller needs to be
of problems including replacement algorithms [8, 16, zgyarmed up with the content of the failed controller.
prefetching algorithms [24], cache partitioning [27], .etc
However, one area that has received little attention is tRe2 Impact of Storage-level Cache Warmup
issue of cache warmup, that is, the process of filling tgorage-level caches are important both for improving ap-
cache with data useful to the workload. The typical aptication performance and for reducing server load.
proach for warming caches is to allow workloads to warfmpact on application performance: When a storage-
the cache on-demand, as part of normal 1/O. level cache is cold, application requests are served from
Three important developments cause us to re-exam@hewer storage (e.g., hard disks). Since there are usually
cache warmup. First, storage-level caches today are @xdew orders of magnitude difference between DRAM-
tremely large; enterprise storage systems contain hon-flash-based caches and slower backend storage, ap-
dreds of Gigabytes of DRAM and Terabytes of flash, usgtications will experience a significant performance drop
primarily for caching [12, 22]. Second, non-disruptivén both latency and bandwidth, resulting in service level
operation is now expected in many data-center envircxgreement violations. As we will see from our trace anal-
ments. Third, given the size of today’s datasets, opergsis in Section 3, the warmup time for typical data-center
ing with a cold cache would cause applications to violateorkloads can be hours to days. During this period, ap-
their service level objectives (such as, average latenagyljcation performance will be worse than what a system
large violations may be considered akin to unavailabiMth a storage-level cache can deliver.
ity. Maintaining warm caches is essential for handling thepact on server load: Another type of impact of the

confluence of the aforementioned trends. storage-level cache warmup period is on the I/O load go-
) ing to the backend storage (either slower storage or a hot-
2.1 Cache Warmup Scenarios spot). When the cache is cold, requests are served from

In the modern storage server environment, storage-letle backend; when the cache is warm, this load is sig-
cache warmup is not uncommon. We list a few scenarioiicantly lower. While pre-loading warmup data to the
where storage-level caches can be cold. cache involves 1/O load to the backend, the advantage is
Dynamic caching: In a clustered storage system, 1/O rethat such load is known in advance; the 1/Os could be per-
quests are handled by a distributed set of storage serviagned more efficiently or scheduled for the right time.
each containing a fraction of the overall data [6, 15]. Re-

gardless of the data distribution scheme, hot spots candc3  Our Approach

cur [18]. A common solution to handle hot spots is to d®ur goal in designing the Bonfire system is to target most
ploy a cache to offload the I1/0s from them [7, 21]. Speciéf the general storage-level cache warmup scenarios in-
ically, cache space is created on a node to process I/Ogtead of a solution for a single scenario. To this end, we
quests for a hot node. Such newly created cache spaceximine a variety of traces on key characteristics that im-
in a cold state. In order to meet service levels and offlopelct the design of warmup mechanisms. We design Bon-
I/Os, the cache needs to be warmed up quickly. fire based on the analysis of traces. Using Bonfire, we
Server restart: Scheduled and unscheduled restarts aifm to reduce the cache warmup impact on both applica-
storage servers do occur and they need to be handied performance and server load.
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Name | Function WSS (GB) Size (GB) Reaccess (%) &
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usrl | user home dir. 1 608 2311 69 © o 1 2 3 4 5 6 7
usr2 | user home dir. 2 362 483 16 ) ) Time (day)
web2 | web server 67 283 76 Figure 2:Dally reaccesses over seven days

Table 1: Selected MSR-Cambridge TracesWsSS denoteswarmUIO or application-based cache warmup; these sce-

thnei tof;‘gg'ﬁ?g dsc?rt j\;fitetg:] t:fetrr?ﬁz'tmgh ,'Sséger;'zrzsgrilsl tt rios can be studied with traces that are collected above
uniqu : P S&rver buffer caches.

total amount of data in the trace. Reaccess percentage repre-
sents the fraction of total amount of data that is reaccessed. . There are a tmal, of 36 traces (13 servers, 36 volumes)
in the MSR-Cambridge trace set, of which we select nine

3 Trace Analysis for close examlnatlon_ (6 servers, 9 volumes). We winnow

) ) ] the full set down to nine by filtering out those traces that
We study traces from server environments to identify fegre jj|-suited for large caches; we first remove 16 write-
tures that enable efficient bulk warmup of large storaggiensive traces{50% writes), then remove 10 traces that
level caches. We want to understand the behavior of reggye 5 small working set size (WSS32GB), and finally
cesses (read-after-reads and reads-after-writes) ang fomove one trace with low reaccess ratel®). Table 1
dimensionstemporal behavioendspatial behavior summarizes the traces of our study. These traces include

. a variety of types, working set sizes, total 1/O sizes, and
3.1 Description of Traces reaccessed amount.

We use block-level traces released by Microsoft Research
Cambridge [19]. These traces were collected from t@e2 Temporal Reaccess Behavior
MSR-Cambridge data center servers and are block-leVég begin our trace study by asking the following ques-
one-week long traces starting from 5PM on Februatipns related to temporal reaccess behavior.
22nd 2007. They were collected below the server buffell. What is the time difference between a reaccess and
caches and there were no storage-level caches in the sys- the previous access to the same block?
tem [20]. We selected these traces for a number of rea2. When do reaccesses happen (wall clock time)?
sons. First, they cover a variety of workloads exhibiting We quantify temporal reaccess behavior by measuring
diverse access patterns. These workloads are server-léweltime between a reaccess and its previous access to
workloads, each containing multiple concurrent clientthe same block. We find two common patterns across all
Second, the traces cover a week of continuous usage; lolages: reaccess within one hour of the previous access
trace times allow us to experiment with long warmup aghourly) and reaccess around one day (23 to 25 hours) af-
proaches and study long-term temporal behavior. Thitdr the previous accesddily). We plot the percentage of
they are publicly available, fostering reproducible résulreaccessed logical block addresses that fall into these two
and independent verification. patterns and the rest of thewtlier. from one hour to one
While the MSR-Cambridge traces serve our purpoday and more than one day) in Figure 1(a). Note that a
of studying workload behavior for warming up storagdegical block can belong to more than one pattern. For
level caches that are added below the server buffer cacleesmple, a logical block address can be accessed every-
they are not fit for other scenarios, e.g., client-side cacti@y at midnight and at 12:30 am; it exhibits both daily
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and hourly patterns. We find that theds1 proj1, proj4, have very small reuse distances; six of the nine traces
usrl, andusr2 traces contain mostly hourly reaccesselave a majority of reaccesses within 10 MB. This result
The srcllandweb2traces exhibit a daily access patterrcorrelates well with Figure la; as expected, we find that
Theprnlandproj2 traces contain more reaccesses that Hourly reaccesses have shorter reuse distances and daily
not fall into the either the hourly or the daily patterns. reaccesses have longer reuse distances. Overall, the re-
The hourly pattern suggests that much of the data acits suggest that the amount of data needs to be moni-
cessed in the last hour is very likely to be accessed n&xted for the hourly pattern is small.
and that we can use the data accessed within the last hoiext, we study the spatial clustering of reaccesses.
to warm up a new cache. Furthermore, within the laSpatially clustered reaccesses, i.e., a contiguous segmen
hour, we find that more recently accessed data is mafeblocks reaccessed together, imply coarser logging gran-
likely to be reaccessed next, suggesting that an LRU-ligkarity and faster warmup data pre-loading from backend
filtering would work well (see Figure 1 (b) for reaccesseagata disks. To measure spatial clustering for each reac-
within the last hour). cess category (hourly, daily, and other), we look at all the
The daily pattern suggests that we can use the datelB regions that contain reaccesses of that category and
accessed 24 hours ago to warmup the new cache nosiiculate how many 4 KB blocks in the 1 MB region are
We also study the relationship between daily reaccessedccesses of that category. We then take the average of all
workloads and wall clock time in Figure 2. We find thasuch percentages across the 1 MB regions and plot them
daily reaccesses happen at the same time each day. $udfigure 4. By correlating with Figure 1a, we find that
regular patterns suggest batch or script workloads; baseates with a majority of hourly reaccesses tend to access
on the description afrc11, we suspect that nightly regresblocks randomly while traces with predominantly daily
sion tests are run on the source code repository. reaccesses (i.esrcll andweb? access larger disk re-
. . gions. Therefore, the results imply that hourly reaccesses
3.3 Spatial Reaccess Behavior should be tracked at a fine granularity while daily reac-
We now study the spatial reaccess behavior and ask §a88ses can be tracked at a coarser granularity.
following questions. The answers to these questions SUgEjna]ly, we find that reaccessed data spread over all the
gest whether we can use logical addresses to determipgress space and there is no specific pattern in the region

what data is valuable to cache warmup. Understandifigy js heavily reaccessed, i.e., no hot spots in the logical
Questions 3 and 4 also helps with the design of Bonfitgjress space.

data structures.

3. How much distinct data is accessed between are&®4 Key Observations

cess and the previous access to the same block? 1. \We find that reaccesses show two common tempo-
4. |s there any spatial clustering among reaccesses? ral patterns: blocks tend to be reaccessed within one
5. Where are reaccesses in the logical address space? hour of the last accessigurly) and approximately
a day after the last accesdafly). Seven out of
nine traces contain significant amount of hourly reac-
cesses.mplication: Keeping track of recently ac-
cessed data will benefit cache warmup.

We begin our study of spatial reaccess behavior by mea-
suring thereuse distancef reaccesses. The reuse dis-
tance is measured as the number of distinct data blocks
read or written between an access and its subsequent reac-
cess to the same block; shorter reuse distances imply that Some workloads exhibit a clear daily reaccess pat-
a small LRU-like cache would capture most reaccesses. tern. Furthermore, the reaccesses happen at the same
We categorize the reuse distance into four groups and plot wall-clock time each day.Implication: Keeping

the percentage of reaccesses that fall into each group for track of data accessed within the last day may benefit
each trace in Figure 3. It shows that many of the traces cache warmup.

4
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We define the convergence timé&,,yerge, iN €QUa-

3. We find that hourly reaccesses have small reuse dign 1. In this equationf’hy is the threshold that defines
tances. In some cases, non-hourly workloads al¥#at is a violation of convergence arithy measures

a benefit for cache warmup. (Tenq); the total amount of time when the new cache hit-

rate is lower thai'hy of the always-warm cache hit-rate

4. We observe that daily reaccesses exhibit spatial cliis=ys to be smaller thafhy of this period. We define
tering. Implication: Longer-term reaccesses can bg o smallest of such’ asT’

t k d t | .t converger TCO'n/'UCTgE measures
racked at a coarser granufarity. how fast a cache can go into a warm state according to

. wall clock time. Reducindlconyerge results in meeting

4 Cache Warmup Algorithms user expected application behavior or SLAs faster.
Using the observations made in Section 3, we design a sdtigure 5 gives an example of how we calculate
of algorithms and perform experiments with them usifG.onverge- We show a sample graph of read hit-rates over
a cache simulator with different configurations. The gotime for an always-warm cache and a new cache. There
of our study is to find if bulk cache warmup is useful andre 13 time intervals from the start of a cache till the end
what warmup data is important for different workload®f the trace. T'1 shows the convergence time when the
In this section, we describe the cache warmup metrigdresholdl'hy is set to 90% and’hy is 20%. The num-
the cache warmup algorithms, and the simulation resulBgr of hit-rate violations betweé€fil to 7.4 is 2, which

) is smaller than 20% of the points in the period fr@ihto
4.1 Cache Warmup Metrics T..q. T2 is the convergence time whéhy is 80% and

The goal of cache warmup is to both reduce the applicas y is 10%; in this period, there is 1 violation at 90 min.
tion perceived performance drop and reduce the 1/0O load

on storage servers. We define two metrics that measure, S jconverae (Datal ) @
H _ server-load = Teomverae —
the performance with respect to our goeéiche conver Teonverse (Datal .+ Datal,,y.,)

gence timandserver load reductionCache convergence
time is defined as the time from the new storage-levelOur second metric is the reduction of server I/O load
cache is added until the cache is fully warm, which can Baring the warmup periodl{onyerge). We define the re-
viewed as the cache warmup period. Server load reddgction of server I/O load as the fraction of data that is
tion measures the reduction of 1/0Os going to the storagerved by the cache out of the total data issued during the
server due to 1/0Os being handled by the cache during th@rmup time as in Equation 2. To compare across dif-
cache convergence time. ferent warmup schemes, we always use the same warmup
We first define the cache convergence time. Our ggudriod, the cold convergence time, over which the server
of cache warmup is to bring the cache into a state agéfuction is calculated?sc,yer 10aa Measures how effec-
it has always been running. We compare the new cadive a cache is in reducing server load during warmup.
behavior to aralways-warncache, a cache that has beef higher value means most of the data is served from
running for long and thus in a warm state. We assurtiée cache and the server has light load. Apart from the
both caches use the same replacement policy, i.e., LB@RI of reducing cache warmup time, Bonfire also tries to
in this study. Specifically, we compare the read hit rat@prove the performance before a new cache is warmed.
of a new cache to an always-warm cache to see WhBRrverload SETVES @s a metric to evaluate cache perfor-
they converge. The convergence time is the earliest fRance during such degraded mode.
stance when the new cache matches the performance of an ]
always-warm cache (and continue to match till the end4f2  Algorithms
the trace). As workloads vary over time and may not halre this subsection we describe the warmup algorithms
fixed service levels, we loosen the definition to accommwe select, and how we select them. The results in Sec-
date minor fluctuations using two parametevslation tion 3 help us design several cache warmup algorithms:
threshold(T'hy) andconvergence threshold@h ). Implication-1suggests that keeping track of the recently



Parameter | Category Value 4.3.2 Overall Improvement

Cache Sizé8cqche System Setting 25, 50, 75, 100% .

Warmup SizeSyy,ymup | Bonfire Setting 5,10, 25% We first present the overall results of cache warmup and
Warmup Region Size Bonfire Setting 4KB, 1MB the effect of different configurations on cache warmup.
Convergel'hy Metrics Threshold 70, 80, 90% Table 3 shows the results of the convergence time and the
Convergel'hn Metrics Threshold 1, 3,5%

server load reduction with different configurations. Serve
Table 2: Simulation Parameters Cache size and warmupload reduction is measured over the convergence time pe-
size are percentage of working set size of each trace. riod of the cold cache for all schemes. We perform ex-
periments with all combinations of parameter values but
accessed blocks may benefit warmlmplication-2sug- only present the smallest and the biggest values of each
gests that the I/O accesses from the previous day may hgsyameter in the table. For each configuration, we select
efit warmup. the result of the best algorithm for each trace and then
Last-K: This scheme tracks the lastegions accessed incglculate the median values over all traces.
atrace. This algorithm is designed for hourly reaccessesrpe pre-load time Bonfire uses to load warmup data
that exhibit a high degree of reuse in the recent past; §iri1,% the new cache is dependent on real storage system
Last-K chooses the most recently accessed regions, it Uiy data layout. As an optimization for fast warmup data
itates an LRU state thereby matching our goal to warmid, we propose the use of a performance snapshot in
the cache to be similar to an always-warm LRU cache. gection 5 to store the warmup data in a contiguous space
First-K: This scheme tracks the firktregions of the past ang |oad it in bulk. For the simulation, we perform a sim-
24 hours. This algorithm is designed for daily reaccessgfs estimation of Bonfire pre-load tiM& ) c100a) bY US-
since it chooses the same time period from the previgug 100 MB/s hard disk sequential read throughput and
day to warm up the current day. the warmup data size. With this calculation, the median
Top-K: This algorithm track& most frequent regions ac-pre-load time is 5.2 minutes when warmup data is 25%
cessed in the past 24 hours. This algorithm is a frequengythe working set size (WSS) of the traces and 1 minute
based algorithm. It serves as a comparison algoritR{pen warmup data is 5% of the WSS; in both cases, pre-
when no temporal trace behavior knowledge is known. |pad time is much smaller compared to the convergence
Random-K: This scheme simply tracksrandom regions time (hours). We explore more details about the actual
accessed in the paSt 24 hOUI’S. Th|$ algorithm serves Qﬁa@rnup data pre_loading t|me W|th rea| experiments in
comparison algorithm when we have no prior knowledgsaction 6.3.
of the trace behavior. Overall, we find that Bonfire reduces both convergence
We compare the performance of each algorithm withtithe and server 1/0 load over the on-demand approach
cold cache that is warmed up on demand and an alwayss|d). Bonfire improves the convergence time by 14% to
warm cache. We also consider disk prefetching and oo, (Column 8 in Table 3) and has 44% to 228% more
pare all algorithms with and without disk prefetching  server load reduction (Column 12 in Table 3) than cold.
4.3 Simulation Results Cor_nparing different parameters, we find that Bor_1fire_
as bigger improvement over cold when the cache size is

We make three observations with our simulation stu Ve aller Specifically, using'hy of 90% andl'hy of 5%
First, cache warmup reduces the time needed for a new ' '

i € average Bonfire convergence time improvement for a
cache to match the behavior of an always-warm cachie: : X
. . small cache is 90% and the improvement for a large cache
Second, even during cache warmup, server load is reduce )
: . IS"65%. Bonfire also reduces the server load for small
compared to a cold cache. Third, certain workload fea- - 0 0
Cfflches, usin@hy of 90% andT'hy of 5%, the average
tures can be used to match the workload to the most £f 2
: . Oad reduction is 75% for a small cache and 63% for a
fective warmup algorithm. . -
large cache. As expected, bigger warmup size increases
4.3.1 Simulation Experiments the pre-load time but results in better Bonfire warmup,
We replay traces using a cache simulator with LRU r&ince more data is brought into cache for warmup.
placement policy. We split each week-long trace into A lower violation threshold'hy- and a higher conver-
seven day-long traces; all our algorithms use the data frgence threshol@'% lead to a looser convergence time
the previous day to warmup the current day, since fragnteria, resulting in better Bonfire improvement in terms
our analysis in Section 3 most reaccesses happen withirconvergence time. For example, the average conver-
one day. We vary several parameters in our simulatiggence time improvement f@rh,, of 90% andl'%  of 5%
cache size, warmup data size, warmup region size, and 7% and the average improvement usirfg,, of 90%
convergence thresholds. The configuration parametersamdThy of 1% is 42%. We also find that 1 MB region
listed in Table 2; we choose a small set of reasonalsige gives better results than 4 KB region size.
values for each parameter and perform experiments with\e also evaluate the impact of disk prefetching with all

each algorithm on all combinations of the parameters. the schemes; disk prefetching uses readahead of a 128 KB



Tpreload Teonverge Server Load Reduction (%)
Scache | Swarmup | Thv | Thy ' (min) | Cold (hr)  Bonfire (h?) Improve (%)| Cold  Always-Warm  Bonfire  Improve,
90 5 5.2 19 4.6 76 33 99 70 112
o5 1 5.2 21 17 19 34 99 59 79
70 5 5.2 18 3.7 79 28 99 70 150
100 1 5.2 21 11 48 33 99 63 91
90 5 1.0 19 8.9 53 33 99 56 70
5 1 1.0 21 18 14 34 99 49 44
70 5 1.0 18 5.0 72 28 99 55 96
1 1.0 21 18 14 33 99 49 48
90 5 5.2 18 0 100 27 88 83 207
o5 1 5.2 19 5.7 70 25 74 78 212
70 5 5.2 8.4 0 100 24 88 77 221
o5 1 5.2 19 5.3 72 25 70 82 228
20 5 1.0 18 3.6 80 27 88 67 148
5 1 1.0 19 6.8 64 25 74 65 160
70 5 1.0 8.4 0 100 25 88 64 156
1 1.0 19 7.0 63 25 70 68 172

Table 3:Overall Simulation ResultsWarmup region size is set to 1 MB for all results in the tafilg..;,.« denotes the time (in
minutes) Bonfire uses to load the warmup data into the new cache. Bopjfire. 4. Improvement is calculated as the percentage
of ColdTeconverge MINUS BONfIr€l tonverge aNA BONFIr€T ) ci0qa OVEr COlAT converge. Server Load Reduction is calculated during
the ColdTconverge time for all schemes (Cold, Always-Warm, and Bonfire).
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prefetching size. With prefetching, the convergence tinperforms the worst. For example, fords] projl, srcll,

and the server load reduction of the cold cache is bettgrdusr2traces, the Last-K algorithm reduces the conver-
than those without prefetching. We find that disk prefetcgence time to zero. These traces have a significant amount
ing lowers the benefit of cache warmup in some cases, btihourly reaccesses. For theb2trace, the convergence
cache warmup still provides an improvement of up to 62fitne of the cold cache is zero on day five; therefore no
in convergence time and up to 228% in server load reduicyprovement is possible for any algorithm.

tion over the cold cache. We do not present the detail8érver Load Reduction: We then study the server load

prefetching results due to space constraints. reduction and plot the reduction percentage of day five
_ _ of each trace with a cold cache, an always-warm cache,
4.3.3 Algorithm Comparison and caches warmed up by different algorithms in Figure 7.

We now study the effect of different algorithms on difServer load reduction is measured over the convergence
ferent traces. In this calculation, we fix cache size to 508ne period of the cold cache for all schemes. We find
WSS, warmup size to 10% WSS, violation threshiBld, that all algorithms reduce more server load than the cold
to 80%, convergence threshdlth 5 to 3%, and warmup cache (bigger is better). In some cases, Bonfire algorithms
region size to 1 MB, a reasonable and common cache settperform the always-warm cache. Since Bonfire uses a
ting that uses parameter values in the middle of the gaMB warmup region size and the cache uses 4 KB block
rameter value range. size, Bonfire has the effect similar to prefetching. Even in
Convergence time: We plot the convergence time ofterms of server load reduction, we find Last-K to be the
day five of each trace with a cold cache and with cachlegst algorithm in general.

warmed by different algorithms in Figure 6. We find thdDaily Reaccessesin Figures 6 and 7, we use the orig-
all algorithms improve or are the same as cold caches iioal trace days which start at 5PM every day. However,
all traces. Last-K is the best algorithm in terms of conhe daily reaccesses happen at other times. To evaluate
vergence time (small is better) for most traces and Toptke effect of daily reaccesses, we shift the daily reac-
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wall clock time needs to be taken into consideration.

cessed traces so that the per-day traces start right begbpéer cache to the storage data volumes. It consists of

the daily reaccess events. We find that First-K is the b % components: a small in-memory staging buffer and

0
"local logging vol | hard disk
for daily reaccesses. They have the same convergeﬁc cal logging volume (e.g., a volume on a hard dis

time as Last-K; the server load reduction of First-K jgron an SSD). Bonf!re works in two phasesmanitor-
110% while that of Last-K is 87%. ing phasewnhere Bonfire tracks the recently used (Last-K)

Algorithm Decision Tree: We use the simulation re-bl()CkS of data for future cache warmup, anavarmup

sults for various parameter settings and correlate thgm-load phasavhen Bonfire uses the monitored infor-

with workload behavior in Section 3 to formulate a der_natlon to efficiently load the warmup data blocks into

cision tree (Figure 8) to choose the best performing %Ee cache. Bonfire uses two key insights in its design.

gorithm based on workload properties. Overall, we fi :
that Last-K works well for most traces. For traces withq.lslst of recently accessed blocks (Last-K). To achieve fast

known daily pattern, First-K works best when the Cacf%?lsvadr'r:g’ B dor;flre :?ES tllwrfi(r)]rmvar?casnaps: ?:] l?{{ n
is started just before the recurring daily event. For trac%gr ad up it? |c|) ¢ er c\)/?g fg tO ruw erriuc Wa « (I:ain
with hourly reaccesses, Last-K works the best. It is alﬁ% sgtaﬁ:%l;eeac?\ yh?aspec:n ”?Of;s deetailane;tp. ¢ expla
the best algorithm for traces with other reaccesses wi P '

small reuse distance. When reuse distance is big, Flrs%lﬁ_ Monitoring Phase

works well when the warmup region size is small an ) )
Last-K and Top-K work well when the region size is bigl?onﬁre monitors the recently accessed blocks (Last-K) by
these cases are rare in the traces. logging the block I/O sent from the storage system buffer

cache to the backend data storage. This approach is ad-

leverages the storage system buffer cache to provide a

4.4 Key Findings vantageous in several ways. The buffer cache maintains
1. Cache warmup is effective in both improving conveits contents using an LRU-like replacement policy; the
gence time and server load reduction. stream of buffer cache 1/Os are thus suited to track a tem-

2. Last-K is the best algorithm in general and First-Roral pattern. With this insight, Bonfire does not need to
works better for known recurring daily patterns. maintain additional data structures. In addition, Bonfire i
} ) not in the performance-critical path as it monitors buffer

5 Bonfire Architecture cache loads; a properly configured system has few cache
The Bonfire architecture is guided by three design prinddads and cache loads already incur a disk read penalty.
ples: maintaining low overhead during normal operatioAnother optimization Bonfire performs is to stage the
providing fast warmup when starting a new cache, and wgarmup metadata in an in-memory staging buffer before
ing a general design that is broadly applicable to a ranfigshing to a logging volume; the staging allows for large
of storage-level cache warmup scenarios. Sections 3 arduential writes to the logging volume.
4 show that the Last-K algorithm provides the best benefitBy only recording warmup metadateétadata-only
overall across a variety of traces. Hence, Bonfire uses tme has to read the block contents from the underlying
Last-K algorithm. disks during warmup pre-loading. However, the original

Figure 9 presents the overall Bonfire architecture. Boblock contents may be scattered randomly on the back-
fire runs in the storage server below its buffer cachend data disks resulting in many random 1/Os. To re-
it monitors all block I/Os sent from the storage systenuce pre-load time, Bonfire can write warmup data to a



performance snapshdah the logging volume in addition into the new cache and then let the foreground workloads
to the warmup metadatangtadata+datpa Performance use the warmed cache.

snapshots trade off faster warmup pre-loading time for in-\we compare Bonfire with the warm cache that has been
creased logging volume space and bandwidth. Spedifinning from the beginning of the tracesiays-warm

cally, we store the data read and written below the seryg{d the cold cache which is warmed up on demand after
buffer cache in an in-memory data staging buffer and flugfe new cache startsdd).

it to the performance snapshot when it is full. The late%(perimental environment:  Experiments were con-
data is written to the end of the performance snapshgficted on a 64-bit Linux 3.3.4 server. which uses a
during warmup only the latest data is used. 2.67GHz Intel Xeon X5650 processor and 32GB of
RAM. The data storage consists of three concatenated
52 . Warmup Pre-load Phas_e , 500 GB 7200 rpm SATA hard drives. We use a separate
Bonfire pre-'lc.Jads anew cache.usmg Its warmup Iog; f}%\rd disk as the logging volume. The storage-level cache
a user specified warmup data size, e.g., 25% of the sizgpL| o experiments is a 256 GB DRAM. Since all our
the new cache. The cache warmup proceeds in one of Wayeiments use synthetic workloads and trace replays,

ways depending on what information was logged durifey are not dependent on the content of the datasets.

the monitoring phase. . . Thus, we allocate a small in-memory buffer as the cache
With a metadata-onlylog, Bonfire reads the circulary, read or write data with random content. With this ap-

metadata log from the most recently written metadataépoach’ we can measure the overhead of accessing the

the least recently written ones. After all the metadatapgsr oM cache and also emulate large storage-level cache
read into memory, it adds the contents of the staging megra

data buffer. After sorting all the metadata and removing
duplicate LBAs, Bonfire reads the warmup data from orig-
inal data disks and writes them into the new cache. ~ 6.1 Synthetic Workload

With a metadata+datalog, Bonfire first loads the We first evaluate our Bonfire prototype using a synthetic
warmup data in the staging buffer to the new cache. Ztpf workload [9], which provides a controlled way to ex-
then reads each chunk of the metadata log and the cogigine the effect of different cache warmup schemes. We
sponding data log on the logging volume into memory ienerate a trace of five million 4 KB reads with the Zipf
reverse time order; most recently written data is read firgtstribution, usingy = 0.4 and N = 50 G B; its working
If a block LBA has not been seen before, Bonfire writest size is 4.8 GB. We then split the trace equally into two
it to the new cache. Since most recently written logs ag@b-traces. In the first half, no storage-level cache is used
read first and loaded into the new cache first, we majg the cold or the Bonfire schemes but tiaéways-warm
sure that no stale data is written in the new cache. scheme begins to use the storage-level cache. For the cold

If during warmup the staging buffer content is unavaiknd the Bonfire schemes, we trigger a new storage-level
able, we only use the warmup metadata and data from daghe creation and initiate warmup for Bonfire at the end
logging volume. If the logging volume is unavailable, thef the first half.
warmup process falls back to the on-demand warmup.  Reduction in Server Load: Figure 10 presents the
6 Evaluation read hit-rate against the number of 1/0Os émid, always-

warm, and Bonfire; higher read hit-rate imply less server

In this section, we describe our implementation of thead. We vary the amount of warmup data fetched by Bon-
Bonfire prototype and present our experimental evalifae from 25% to 100% of the working-set size. Toald
tion. Our goal is to measure the benefit of Bonfire in rgcheme fetches the blocks on demand after the creation of
ducing cache warmup time, server load, client perceivéite new cache at the 2.5M I/O mark, resulting in it achiev-
read performance, and to understand the cost associatgda hit rate of 84% at the end of the trac€old falls
with these improvements. behind and does not reach the hit-rate ofdlveays-warm

We implement the Bonfire prototype as a user spaseheme (96%) by the end of the trace, usifigha- of 10%
trace-replay program. As the MSR-Cambridge traces amd7'h of 3%. In contrast, Bonfire fetches the data in
captured below the storage server’s buffer cache, replaytk and pre-loads the cache. If the warmup size is limited
ing them accurately simulates the 1/0 stream from buffey 25%, Bonfire achieves a hit-rate above 90%lefays-
cache to the backend data disks [19]. Our trace replayvugarmat the 4M I/O mark. Larger warmup enables faster
sues synchronous I/Os and ignores request time, allowhigrate convergence; Bonfire with 50% warmup data con-
our experiments to finish faster and be independent of trexges at the 3.6M mark I/O mark; a 75% warmup size
hardware environment. We implement both the loggiradlows Bonfire to converge at the 2.8M 1/O mark. Bonfire
schemes of Bonfiremetadata-onlyand metadata+data with a 100% warmup size converges immediately at the
In our experiments, we first load the cache warmup d&#&M 1/0 mark.
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Improvement in Application Performance: We also the storage-level cache from day 1. Tpwejl andweb2
compare the read latencies of tt@d, thealways-warm traces provide realistic workloads that can vary signifi-
and the Bonfire warmed cache. Figure 11 plots the rezhtly over time; specifically, the hit-rate pfojl fluc-
latency over the number of 1/0s. Bonfire achieves pdtates wildly during day 6 and stabilizes at the end.
formance equal to thelways-warmscheme (averaging at

0.5 ms) after the new cache starts, while totd scheme Reduction in Server Load: We examine the read hit-

averages at 2.6 ms. rate to determine how Bonfire reduces storage server load.
Figure 12 presents the read hit rateslefays-warmcold,
6.2 Trace-Based Workloads and Bonfire over number of 1/0Os with therojl trace.

Next, we examine Bonfire performance using fitejl We find that thecold cache does not converge with the
andweb2traces from the set of MSR-Cambridge tracealways-warmcache until around 2.7M 1/Os after the new
We select these two traces because they exhibit differeathe starts (at around 0.9M 1/Os). In contrast, Bonfire
properties. Theprojl trace has more I/Os and a largeonverges around 1.1M I/Os after the new cache starts (a
working set but lower reaccess rate than web2trace 59% improvement). Figure 12 also shows two interesting
(see Table 1). From our analysis in Section 3, we also firesults. First, we see that with Bonfire the read hit rate
that proj1 exhibits mainly hourly reaccesses; theb2 immediately increases when the new cache starts while
trace exhibits both daily reaccesses and reaccesses Whiitthe cold scheme, the read hit rate increases gradually.
are more than one day. Thmojl trace also helps to However, the workload fluctuations cause the hit-rate to
stress Bonfire since it has a working set size (642 GBjop thereby delaying convergence time for Bonfire until
that is larger than our storage-level cache size (256 GB)e 2.1M 1/O mark. Second, after Bonfire converges, the
We replay day one to day six of tipeoj1 andweb2traces hit rate improves and matches the hit-rate of daheays-

and enable the storage-level cache doftd and Bonfire warm cache, while the hit rate of the cold scheme drops
at the beginning of day 6; th@ways-warmscheme usesagain at around the 3M I/O mark. The segment after 3M
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Zipf projl web2
‘ Metadata-Only Metadata+DatL Metadata-Only Metadata+Dath Metadata-Only ~ Metadata+Data
Log Vol Space 19MB 9.5GB 20MB 9.9GB 71MB 36GB
Avg Log Vol B/W 194 KB/s 97 MB/s 9.1KB/s 4.6 MB/s 476 KB/s 238 MB/s
Pre-Warm Time 132s 126s 184s 130s 1224s 664 s

Table 4:Bonfire Overheads

I/Os uses data that may have been accessed beforeath@7 MB/s. The benefit ofnetadata+datascheme on
new cache is inserted. Both the always-warm and Bonfikarmup data loading time is small. The Zipf workload
would do well as they have captured the history, while tliee drawn from a 50 GB logical address space and has a
cold scheme will have more cache misses. small working set; reading the warmup data from backend
Similarly, forweb2 Figure 14 presents the read hit ratedata disks is not much slower than reading it sequentially
of the three schemes. With Bonfire, the read hit rate iftom the performance snapshot. For fivej1 andweb2
creases right after the new cache is added and convetgases, themetadata+dataoffers more benefit, improv-
with always-warm after 0.2M I/Os. With the cold scheméng warmup loading time by 29% and 46%. Both traces
read hit rate stays around zero after the new cache staftgve larger logical address spaces than the Zipf work-
Improvement in Application Performance: Fig- load; warmup data is more likely to be random and read-
ure 13 presents the latency results of phej1 trace. We ing it from backend disks is slower. However, foeb2
see similar effect of Bonfire with respect to read latencyetadata+datahas a high logging bandwidth. Theeta-
as with read hit rate. Theold scheme has two areas witldata+datascheme logs all foreground 1/Os; its logging
high read latency: one around the 1M I/O mark and abandwidth is thus dependent on the workload I/O band-
other around the 3M I/0O mark; these correspond with igdth. Theweb2trace has intensive 1/0Os, resulting in its
low read hit rate regions. While Bonfire converges at tliegh metadata+dataverhead. Therefore, when there are
2M 1/0 mark, the read latency before it converges is comore idle times in the 1/O requests and when the data logi-
parable with the latency of tredways-warnmscheme. cal address space is large, thetadata+datacheme may
Figure 15 presents the latency results ofitleb2trace. offer more benefit for a fast cache warmup.
Similar to its read hit rate results, we see that with Bon- Next, we study the trace completion time of different

fire, the read latency drops after the new cache starts. Eefiemes. For the Zipf workload, teld scheme runs for
read latency otold stays around 0.6 ms. Theeb2trace 1.8 hours while Bonfire using theetadata-onlyscheme
contains mostly sequential 1/Os; even though the read fifg Bonfire using thenetadata+datascheme both com-
rate is low for thecold scheme, reading data from backenglete in 23 minutes, including pre-load time. For fhej1
disks is reasonably fast. trace, thecold scheme runs for 13 minutes while Bonfire
6.3 Overhead Analysis using themetadata-onlyscheme and thmetadata+data

We quantify the Bonfire overhead in terms of fixed arﬁf}heme completes in 9.5 minutes and 12 minutes. Ve

variable costs. The fixed costs include the metadata éi that for both the Zipf workload and therojl trace,

the data staging buffer, whose sizes can be configurec?@e cost of Bonfire pre-loading plus the foreground work-

! . . load run time is still smaller than the on-demand warmup
user. Bonfire also imposes a variable cost based on the ina that Bonfi the backend disk
workload. Logging warmup metadata and data adds ban'ﬁle.’ suggestmgt at bonfire uses the backend diSks more

) . . efriciently leading to the performance improvement.
width and storage space overhead; pre-loading warmup )
data to the new cache extends the time when the foreFor theweb2trace, thecold scheme runs for 6.5 min-
ground workload can start to use the new cache. utes; Bonfire using thenetadata-onlyscheme and the

Table 4 presents the overhead of the Zipf workload, tRe¢tadata+datescheme completes in 25 minutes and 19
proj1 trace, and thaveb2trace with themetadata-only Minutes. The read latency obld with the web2trace
and themetadata+datdogging schemes, when the logls much lower than with the Zipf workload and tpeoj1
ging metadata buffer size is 256 KB and the logging daf&ce because of its I/O sequentiality. However, ihab2
buffer size is 128 MB. We measure the amount of loggifRce requires a high overhead of Bonfire logging and pre-
data generated over time and use the original request!@8ding (see Table 4), resulting in Bonfire running longer
cess times in therojl andweb2traces to calculate |Og_than thecold scheme. To reduce the Bonfire overhead,

ging bandwidth. For the Zipf workload, we assume dA€ Workload idle time can be utilized to perform logging

intense foreground 1/O speed of 1 Gbps. and pre-loading; flash-based SSDs can also be used as the
Overall, we find larger monitoring overhead and fast{@99ing volume.

warmup data pre-loading with tteetadata+datacheme  Finally, we study the effect of the staging buffer size

than the metadata-onlyscheme. For the Zipf work-and vary the metadata buffer size from 64 KB to 1 MB.

load, we see a high demand for logging volume bant@lhe data buffer size is proportional to the metadata one

width when using thenetadata+datascheme, averagingand vary from 32 MB to 512 MB. When the staging buffer
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is big, we find that less data is written to the perfor- RAMCloud [23] is a storage architecture that stores all
mance snapshot; 512 MB data buffer size has up to 28#ta in DRAM to consistently achieve low-latency access.
reduction in total warmup data written as compared to tRAMCloud maintains disk or flash-based backups that are
32 MB size. With bigger staging buffer, more overwritessed for recovering from failures [23]. Bonfire-like cache-
can be absorbed in the buffer. During warmup time, Bomarmup approaches may still apply in these scenarios.
fire also benefit from a bigger staging buffer; less dataThe Rio file cache [10] enables memory contents to
needs to be read from the smaller performance snapshat/ive crashes, thereby reducing write traffic to storage.
and a larger part of the warmup data is still in the meriktowever, Rio does not handle restarts with loss of power
ory staging buffer. With 512 MB data buffer, warmup timer those involving hardware upgrades. Further, warmup
improves up to 50% as compared to the 32 MB one. Ovseenarios such as dynamic cache creation would not ben-
all, we find that larger staging buffer benefit both the moefit from Rio.

itoring and the warmup phase. However, a big stagi@ache warmup techniques: Windows SuperFetch is
buffer consumes more memory. Moreover, if the stagirgtechnique to reduce system boot time and application
buffer is unavailable during warmup, more warmup dataunch time by pre-loading commonly used boot sequence
is lost with bigger staging buffer. Therefore, we choose &md applications into memory based on history usage pat-
use 256 KB metadata and 128 MB data staging buffer. tern. Bonfire is similar to SuperFetch in that it also pre-
6.4 Summary loads warmup data and uses the access pattern in history.

) , . However, Bonfire is different from SuperFetch in sev-
Our evaluation of the Bonfire prototype with a synthetic : ) .
ral ways. First, Bonfire monitors and warms up storage-

workload and two real traces .ShOWS that Bonfire larg ?é{vel caches, which is much bigger than traditional buffer
reduces the cache warmup time over a cold cache that

. ) czilches. Second, Bonfire monitors all workloads below the
is warmed up on demand and increases cache read hiis. . S .
server buffer cache instead of at the application level. Fi-

These benefits come with a small fixed monitoring mem- lly, Bonfire can choose to use the performance snapshot
ory overhead and a small logging space and bandwi(ii(t) u;ther improve the warmup time
overhead when using thmetadata-onlyscheme. The '

metadata+datacheme has a higher logging overhead, €8- Conclusion

pecially when there is !ittle_I/O idle time, but allows fasteLarge caches are becoming the norm in the storage stack.
warmup data pre-loading time. When they are empty, they serve little purpose. Unfortu-
7 Related Work nately, a combination of scale and dynamism in today’s
data centers is causing caches to be empty more often.

We present the related work including workload studi heérefore, the process of warming caches needs to be

storage-level cache usage, and existing approaches tos?us ied in detail.
cache warmup.

D . . As a first step, we analyze server-side workload traces
Workload studies: Workload studies can provide valu-a d quantify key workload characteristics that can be used
able data needed to make informed design decisions. A d y

) . tq design warmup mechanisms. We propose Bonfire to
number of workload studies have addressed caching rectively and efficiently bulk-load storage-level cashe

varying degrees. The most related is an analysis of dv%‘lgﬂ useful data. We find from experiments that Bonfire

tance between reaccesses by Zhou et al. [29]; their goa .
. ; ! regduces the time needed for the cache to reach the perfor-
is to understand how it changes across multiple levels 0 u y .
) mance level of an “always-warm” cache. Further, Bonfire

cache to develop the Multi-Queue cache replacement al-

: . greatly reduces the load on the backend storage. The run-
gorithm. Adams et al. [3] focused on long-term behavi o N
time overhead due to Bonfire is also small, thus making it

over a coarser time-frame. Ellard et al. [11] examined
wﬁble for a large number of workloads.

NFS traces and examined caching as it pertains to bloc . . . .
o . . . We believe that the techniques we use in Bonfire can
lifetimes. Roselli et al. [25] focused on caching with re- .

so be extended to other cache warmup scenarios, such

gard to disk performance. Recently, Harter et al. [1 : . ; i i
. . S client-side cache warmup and virtual machine restarts;
studied the I/O behavior of Apple desktop applications. .
we leave it as our future work.

Storage-level cache: Storage-level caches are becom-

ing common in modern storage systems. MemcachecAscknow|edgments

a ,3'Slmzmzqﬁmemory caching sysstem thaF hashbeenbuWedthankthe anonymous reviewers and Eno Thereska (our shep-
widely by different systems [13]. Suggestions have eﬁ@rd) for their tremendous feedback and comments, which have

proposed to use application-level scripts to pre'poDu'%‘@ostantially improved the content and presentation of this pa-

important data to warm the cache [1, 2]. Similarly, Amab'_er. We also thank the members of the NetApp Advanced Tech-

zon ElastiCache va'des distributed in-memory CaChe%'&ogy Group and the ADSL research group for their insightful
the cloud, and relies on redundancy to reduce the eﬁeCE8anentS

warmup times [5].
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