
Warming up Storage-Level Caches with Bonfire

Yiying Zhang†, Gokul Soundararajan∗, Mark W. Storer∗, Lakshmi N. Bairavasundaram∗,
Sethuraman Subbiah∗, Andrea C. Arpaci-Dusseau†, Remzi H. Arpaci-Dusseau†

† University of Wisconsin-Madison,∗ NetApp, Inc.

Abstract
Large caches in storage servers have become essential for
meeting service levels required by applications. These
caches need to be warmed with data often today due to
various scenarios including dynamic creation of cache
space and server restarts that clear cache contents. When
large storage caches are warmed at the rate of application
I/O, warmup can take hours or even days, thus affecting
both application performance and server load over a long
period of time.

We have createdBonfire, a mechanism for accelerat-
ing cache warmup. Bonfire monitors storage server work-
loads, logs important warmup data, and efficiently pre-
loads storage-level caches with warmup data. Bonfire is
based on our detailed analysis of block-level data-center
traces that provides insights into heuristics for warmup as
well as the potential for efficient mechanisms. We show
through both simulation and trace replay that Bonfire re-
duces both warmup time and backend server load signifi-
cantly, compared to a cache that is warmed up on demand.

1 Introduction
Caches are useful only when they contain data. Cache
warmup, the process of filling caches with data, has so
far received scant research attention since it occurred
rarely and did not have a significant impact. Thus, cache
warmup simply happens on-demand, that is, as the work-
load performs I/Os. Today, the frequency and the impact
of cache warmup are both changing.

Cache warmup of server-side, or storage-level, caches
now occurs more often. For example, cache space is be-
ing created dynamically in order to improve application
performance [5] or reduce backend I/O load [21]. These
caches take time to become effective due to warmup [5].
As another example, with increasing scale, many planned
and unplanned restarts of storage nodes occur [14]; their
caches need to be warmed up after the restart.

Cache warmup also has a tremendous impact on
service-level agreements (SLAs) since storage-level cache
space is now extremely large – typically hundreds of Gi-
gabytes of DRAM and Terabytes of flash [12, 22, 23].
SLAs for performance and availability often use wall-
clock time to define degraded mode [4]. Terabyte-sized
caches need a large number of I/Os to become warm.
When these I/Os are issued on-demand at the rate of ap-
plication I/O, the rate may not be high enough to fill the

cache quickly (with respect to wall-clock time).
Given the increase in both the frequency and impact

of cache warmup, we need to developeffectiveandeffi-
cientwarmup mechanisms. An effective mechanism will
warm the cache with data that will be used by the ap-
plication, thereby increasing the cache hit rate as com-
pared to a cold cache being warmed through application
access. The increased hit rate will improve the average
I/O latency experienced by the application, as well as re-
duce I/O load on backend storage. An efficient mecha-
nism will use minimal overhead when monitoring work-
loads for warmup-related characteristics and also place
less load on the storage backend during warmup process
(calledpre-load) than on-demand warmup.

We develop a mechanism called Bonfire to warm
storage-level caches effectively and efficiently. Bonfire
monitors storage server workloads, logs valuable warmup
information, and bulk loads warmup data to new caches.
In creating Bonfire, we make three contributions.

First, we analyze a variety of traces and quantify work-
load characteristics that are important for cache warmup.
We find two primary patterns of block reaccesses: reac-
cesses within an hour and daily reaccesses that happen at
the same wall-clock time each day. We also find correla-
tions between spatial and temporal locality.

Second, based on our trace analysis, we design a
set of cache-warmup algorithms and show their benefit
through simulation. We also construct a decision tree of
cache warmup heuristics based on the simulation results.
We show that using the most-recently accessed data for
warmup provides the best general-case warmup effective-
ness. For episodic patterns, such as running a series of
regression tests, using the data from the same time pe-
riod in the previous day provides the most effective cache
warmup. If the cache workload is well understood, the
decision tree can be used to determine the optimal cache
warmup approach.

Third, we implement and evaluate a prototype of Bon-
fire that uses the most-recently accessed data for warmup.
Bonfire has two options for recording information and
performing warmup –metadata-onlyandmetadata+data.
Metadata-onlylogs only the LBAs (block addresses) that
are accessed, whilemetadata+dataalso logs the accessed
data sequentially on a separate disk or SSD. In the former
case, Bonfire obtains the data for warmup from the back-
end disk location. In the latter case, the data is read from

1



the logging device. The difference between the two op-
tions is in the time taken for pre-load and in the overhead
for logging. We evaluate both options in our experiments.

With Bonfire, after warmup, we see an overall speedup
of up to 100% in warmup time (i.e., time until cache per-
formance matches that of an “always-warm” cache) and
up to a 228% reduction in server load as compared to on-
demand warmup. Meanwhile, Bonfire adds only small
overhead to the storage system. Themetadata-onlyop-
tion uses 256 KB of memory and up to 71 MB of logging
device space. It also takes 3 to 20 minutes to pre-load
warmup data. Themetadata+dataoption uses 128 MB of
memory and up to 36 GB of logging device space. It takes
2 to 11 minutes to pre-load warmup data.

2 Storage-level Cache Warmup
Caches have been used in storage systems for a long time;
research in storage caching has also addressed a variety
of problems including replacement algorithms [8, 16, 28],
prefetching algorithms [24], cache partitioning [27], etc.
However, one area that has received little attention is the
issue of cache warmup, that is, the process of filling the
cache with data useful to the workload. The typical ap-
proach for warming caches is to allow workloads to warm
the cache on-demand, as part of normal I/O.

Three important developments cause us to re-examine
cache warmup. First, storage-level caches today are ex-
tremely large; enterprise storage systems contain hun-
dreds of Gigabytes of DRAM and Terabytes of flash, used
primarily for caching [12, 22]. Second, non-disruptive
operation is now expected in many data-center environ-
ments. Third, given the size of today’s datasets, operat-
ing with a cold cache would cause applications to violate
their service level objectives (such as, average latency);
large violations may be considered akin to unavailabil-
ity. Maintaining warm caches is essential for handling the
confluence of the aforementioned trends.

2.1 Cache Warmup Scenarios
In the modern storage server environment, storage-level
cache warmup is not uncommon. We list a few scenarios
where storage-level caches can be cold.
Dynamic caching: In a clustered storage system, I/O re-
quests are handled by a distributed set of storage servers,
each containing a fraction of the overall data [6, 15]. Re-
gardless of the data distribution scheme, hot spots can oc-
cur [18]. A common solution to handle hot spots is to de-
ploy a cache to offload the I/Os from them [7, 21]. Specif-
ically, cache space is created on a node to process I/O re-
quests for a hot node. Such newly created cache space is
in a cold state. In order to meet service levels and offload
I/Os, the cache needs to be warmed up quickly.
Server restart: Scheduled and unscheduled restarts of
storage servers do occur and they need to be handled

quickly and efficiently. After the restart, the system needs
to return quickly to the performance level it was at prior
to the restart. The storage-level cache space needs to be
brought back to the warm state before the level of perfor-
mance is back to normal. Although persistent and durable
caching solutions do exist for flash-based caches, they
have their own overheads and do not work for DRAM-
based caches [26].
Server take-over: To handle server down time bet-
ter, a common technique used is pairing storage con-
trollers with a shared set of disks in the backend, orhigh-
availability pairs. In the event of a controller failure, the
operational storage controller takes over the duties of the
failed controller. This approach is also useful for provid-
ing non-disruptive controller upgrades and maintenance.
Storage-level cache warmup is an important issue in the
high-availability scenario as well. The storage-level cache
located in the operational storage controller needs to be
warmed up with the content of the failed controller.

2.2 Impact of Storage-level Cache Warmup
Storage-level caches are important both for improving ap-
plication performance and for reducing server load.
Impact on application performance: When a storage-
level cache is cold, application requests are served from
slower storage (e.g., hard disks). Since there are usually
a few orders of magnitude difference between DRAM-
or flash-based caches and slower backend storage, ap-
plications will experience a significant performance drop
in both latency and bandwidth, resulting in service level
agreement violations. As we will see from our trace anal-
ysis in Section 3, the warmup time for typical data-center
workloads can be hours to days. During this period, ap-
plication performance will be worse than what a system
with a storage-level cache can deliver.
Impact on server load: Another type of impact of the
storage-level cache warmup period is on the I/O load go-
ing to the backend storage (either slower storage or a hot-
spot). When the cache is cold, requests are served from
the backend; when the cache is warm, this load is sig-
nificantly lower. While pre-loading warmup data to the
cache involves I/O load to the backend, the advantage is
that such load is known in advance; the I/Os could be per-
formed more efficiently or scheduled for the right time.

2.3 Our Approach
Our goal in designing the Bonfire system is to target most
of the general storage-level cache warmup scenarios in-
stead of a solution for a single scenario. To this end, we
examine a variety of traces on key characteristics that im-
pact the design of warmup mechanisms. We design Bon-
fire based on the analysis of traces. Using Bonfire, we
aim to reduce the cache warmup impact on both applica-
tion performance and server load.

2



A
m

ou
nt

 o
f R

ea
cc

es
s 

(%
)

0

20

40

60

80

100

mds1 prn1 proj1 proj2 proj4 src11 usr1 usr2 web2

Hourly Hour−to−Day Daily More−than−1−Day

(a) Hour Granularity

A
m

ou
nt

 o
f R

ea
cc

es
s 

(%
)

0

20

40

60

80

100

mds1 prn1 proj1 proj2 proj4 src11 usr1 usr2 web2

1min 1−10min 10−30min 30−60min

(b) Within an Hour

Figure 1:Relative Reacess Temporal Pattern

Name Function WSS (GB) Size (GB) Reaccess (%)
mds1 media server 84 95 10
prn1 print server 80 212 51
proj1 project dir. 1 642 870 16
proj2 project dir. 2 390 1298 55
proj4 project dir. 4 122 170 26
src11 source control 119 1521 90
usr1 user home dir. 1 608 2311 69
usr2 user home dir. 2 362 483 16
web2 web server 67 283 76

Table 1: Selected MSR-Cambridge TracesWSS denotes
the total working set size of the trace, which is the size of all the
unique data read or written over the trace. Size represents the
total amount of data in the trace. Reaccess percentage repre-
sents the fraction of total amount of data that is reaccessed.

3 Trace Analysis
We study traces from server environments to identify fea-
tures that enable efficient bulk warmup of large storage-
level caches. We want to understand the behavior of reac-
cesses (read-after-reads and reads-after-writes) along two
dimensions:temporal behaviorandspatial behavior.

3.1 Description of Traces
We use block-level traces released by Microsoft Research
Cambridge [19]. These traces were collected from the
MSR-Cambridge data center servers and are block-level
one-week long traces starting from 5PM on February
22nd 2007. They were collected below the server buffer
caches and there were no storage-level caches in the sys-
tem [20]. We selected these traces for a number of rea-
sons. First, they cover a variety of workloads exhibiting
diverse access patterns. These workloads are server-level
workloads, each containing multiple concurrent clients.
Second, the traces cover a week of continuous usage; long
trace times allow us to experiment with long warmup ap-
proaches and study long-term temporal behavior. Third,
they are publicly available, fostering reproducible results
and independent verification.

While the MSR-Cambridge traces serve our purpose
of studying workload behavior for warming up storage-
level caches that are added below the server buffer caches,
they are not fit for other scenarios, e.g., client-side cache

Time (day)

0 1 2 3 4 5 6 7D
ai

ly
 R

ea
cc

es
se

s 
(%

)

0

2

4

6 src11
web2

Figure 2:Daily reaccesses over seven days

warmup or application-based cache warmup; these sce-
narios can be studied with traces that are collected above
server buffer caches.

There are a total of 36 traces (13 servers, 36 volumes)
in the MSR-Cambridge trace set, of which we select nine
for close examination (6 servers, 9 volumes). We winnow
the full set down to nine by filtering out those traces that
are ill-suited for large caches; we first remove 16 write-
intensive traces (>50% writes), then remove 10 traces that
have a small working set size (WSS< 32GB), and finally
remove one trace with low reaccess rate (< 1%). Table 1
summarizes the traces of our study. These traces include
a variety of types, working set sizes, total I/O sizes, and
reaccessed amount.

3.2 Temporal Reaccess Behavior
We begin our trace study by asking the following ques-
tions related to temporal reaccess behavior.

1. What is the time difference between a reaccess and
the previous access to the same block?

2. When do reaccesses happen (wall clock time)?
We quantify temporal reaccess behavior by measuring

the time between a reaccess and its previous access to
the same block. We find two common patterns across all
traces: reaccess within one hour of the previous access
(hourly) and reaccess around one day (23 to 25 hours) af-
ter the previous access (daily). We plot the percentage of
reaccessed logical block addresses that fall into these two
patterns and the rest of them (other: from one hour to one
day and more than one day) in Figure 1(a). Note that a
logical block can belong to more than one pattern. For
example, a logical block address can be accessed every-
day at midnight and at 12:30 am; it exhibits both daily

3



A
m

ou
nt

 o
f R

ea
cc

es
se

s 
(%

)

0

20

40

60

80

100

mds1 prn1 proj1 proj2 proj4 src11 usr1 usr2 web2

<10MB 10MB−1GB 1−10GB 10−100GB >100GB

Figure 3:Reuse Distance

R
ea

cc
es

se
s 

in
 1

M
B

 R
eg

io
n 

(%
)

0

20

40

60

80

100

mds1 prn1 proj1 proj2 proj4 src11 usr1 usr2 web2

Hourly Daily Other

Figure 4:Consecutive Length

and hourly patterns. We find that themds1, proj1, proj4,
usr1, andusr2 traces contain mostly hourly reaccesses.
Thesrc11andweb2traces exhibit a daily access pattern.
Theprn1andproj2 traces contain more reaccesses that do
not fall into the either the hourly or the daily patterns.

The hourly pattern suggests that much of the data ac-
cessed in the last hour is very likely to be accessed next
and that we can use the data accessed within the last hour
to warm up a new cache. Furthermore, within the last
hour, we find that more recently accessed data is more
likely to be reaccessed next, suggesting that an LRU-like
filtering would work well (see Figure 1 (b) for reaccesses
within the last hour).

The daily pattern suggests that we can use the data
accessed 24 hours ago to warmup the new cache now.
We also study the relationship between daily reaccessed
workloads and wall clock time in Figure 2. We find that
daily reaccesses happen at the same time each day. Such
regular patterns suggest batch or script workloads; based
on the description ofsrc11, we suspect that nightly regres-
sion tests are run on the source code repository.

3.3 Spatial Reaccess Behavior
We now study the spatial reaccess behavior and ask the
following questions. The answers to these questions sug-
gest whether we can use logical addresses to determine
what data is valuable to cache warmup. Understanding
Questions 3 and 4 also helps with the design of Bonfire
data structures.

3. How much distinct data is accessed between a reac-
cess and the previous access to the same block?

4. Is there any spatial clustering among reaccesses?

5. Where are reaccesses in the logical address space?

We begin our study of spatial reaccess behavior by mea-
suring thereuse distanceof reaccesses. The reuse dis-
tance is measured as the number of distinct data blocks
read or written between an access and its subsequent reac-
cess to the same block; shorter reuse distances imply that
a small LRU-like cache would capture most reaccesses.
We categorize the reuse distance into four groups and plot
the percentage of reaccesses that fall into each group for
each trace in Figure 3. It shows that many of the traces

have very small reuse distances; six of the nine traces
have a majority of reaccesses within 10 MB. This result
correlates well with Figure 1a; as expected, we find that
hourly reaccesses have shorter reuse distances and daily
reaccesses have longer reuse distances. Overall, the re-
sults suggest that the amount of data needs to be moni-
tored for the hourly pattern is small.

Next, we study the spatial clustering of reaccesses.
Spatially clustered reaccesses, i.e., a contiguous segment
of blocks reaccessed together, imply coarser logging gran-
ularity and faster warmup data pre-loading from backend
data disks. To measure spatial clustering for each reac-
cess category (hourly, daily, and other), we look at all the
1 MB regions that contain reaccesses of that category and
calculate how many 4 KB blocks in the 1 MB region are
reaccesses of that category. We then take the average of all
such percentages across the 1 MB regions and plot them
in Figure 4. By correlating with Figure 1a, we find that
traces with a majority of hourly reaccesses tend to access
blocks randomly while traces with predominantly daily
reaccesses (i.e.,src11 and web2) access larger disk re-
gions. Therefore, the results imply that hourly reaccesses
should be tracked at a fine granularity while daily reac-
cesses can be tracked at a coarser granularity.

Finally, we find that reaccessed data spread over all the
address space and there is no specific pattern in the region
that is heavily reaccessed, i.e., no hot spots in the logical
address space.

3.4 Key Observations
1. We find that reaccesses show two common tempo-

ral patterns: blocks tend to be reaccessed within one
hour of the last access (hourly) and approximately
a day after the last access (daily). Seven out of
nine traces contain significant amount of hourly reac-
cesses.Implication: Keeping track of recently ac-
cessed data will benefit cache warmup.

2. Some workloads exhibit a clear daily reaccess pat-
tern. Furthermore, the reaccesses happen at the same
wall-clock time each day. Implication: Keeping
track of data accessed within the last day may benefit
cache warmup.

4



Time (min)
0 20 40 60 80 100 120

R
ea

d 
H

it 
R

at
e 

(%
)

0

20

40

60

80

100

T1 T2

always−warm
new

Figure 5:Example for Bonfire Metrics

3. We find that hourly reaccesses have small reuse dis-
tances. In some cases, non-hourly workloads also
have small reuse distances.Implication: Even a
small buffer of recently accessed blocks may provide
a benefit for cache warmup.

4. We observe that daily reaccesses exhibit spatial clus-
tering. Implication: Longer-term reaccesses can be
tracked at a coarser granularity.

4 Cache Warmup Algorithms
Using the observations made in Section 3, we design a set
of algorithms and perform experiments with them using
a cache simulator with different configurations. The goal
of our study is to find if bulk cache warmup is useful and
what warmup data is important for different workloads.
In this section, we describe the cache warmup metrics,
the cache warmup algorithms, and the simulation results.

4.1 Cache Warmup Metrics
The goal of cache warmup is to both reduce the applica-
tion perceived performance drop and reduce the I/O load
on storage servers. We define two metrics that measure
the performance with respect to our goal:cache conver-
gence timeandserver load reduction. Cache convergence
time is defined as the time from the new storage-level
cache is added until the cache is fully warm, which can be
viewed as the cache warmup period. Server load reduc-
tion measures the reduction of I/Os going to the storage
server due to I/Os being handled by the cache during the
cache convergence time.

We first define the cache convergence time. Our goal
of cache warmup is to bring the cache into a state as if
it has always been running. We compare the new cache
behavior to analways-warmcache, a cache that has been
running for long and thus in a warm state. We assume
both caches use the same replacement policy, i.e., LRU
in this study. Specifically, we compare the read hit rate
of a new cache to an always-warm cache to see when
they converge. The convergence time is the earliest in-
stance when the new cache matches the performance of an
always-warm cache (and continue to match till the end of
the trace). As workloads vary over time and may not have
fixed service levels, we loosen the definition to accommo-
date minor fluctuations using two parameters:violation
threshold(ThV ) andconvergence threshold(ThN ).

N violatesT = number oft s.t.

T ≤ t ≤ Tend andHt
new < ThV ·Ht

warm

Tconverge = min{T |N violatesT ≤ ThN · (Tend − T )}

where0 < ThV ≤ 1, 0 ≤ ThN < 1 and

Ht
scheme is the read hit rate of a cache scheme at timet

(1)

We define the convergence time,Tconverge, in equa-
tion 1. In this equation,ThV is the threshold that defines
what is a violation of convergence andThN measures
how many such violations (N violatesT ) are allowed.
We look at the time period afterT till the end of the trace
(Tend); the total amount of time when the new cache hit-
rate is lower thanThV of the always-warm cache hit-rate
needs to be smaller thanThN of this period. We define
the smallest of suchT asTconverge. Tconverge measures
how fast a cache can go into a warm state according to
wall clock time. ReducingTconverge results in meeting
user expected application behavior or SLAs faster.

Figure 5 gives an example of how we calculate
Tconverge. We show a sample graph of read hit-rates over
time for an always-warm cache and a new cache. There
are 13 time intervals from the start of a cache till the end
of the trace. T1 shows the convergence time when the
thresholdThV is set to 90% andThN is 20%. The num-
ber of hit-rate violations betweenT1 to Tend is 2, which
is smaller than 20% of the points in the period fromT1 to
Tend. T2 is the convergence time whenThV is 80% and
ThN is 10%; in this period, there is 1 violation at 90 min.

Rserver load =

∑Tconverge

t=0
(Datat

cache
)

∑Tconverge

t=0
(Datat

cache
+Datatserver)

(2)

Our second metric is the reduction of server I/O load
during the warmup period (Tconverge). We define the re-
duction of server I/O load as the fraction of data that is
served by the cache out of the total data issued during the
warmup time as in Equation 2. To compare across dif-
ferent warmup schemes, we always use the same warmup
period, the cold convergence time, over which the server
reduction is calculated.Rserver load measures how effec-
tive a cache is in reducing server load during warmup.
A higher value means most of the data is served from
the cache and the server has light load. Apart from the
goal of reducing cache warmup time, Bonfire also tries to
improve the performance before a new cache is warmed.
Rserver load serves as a metric to evaluate cache perfor-
mance during such degraded mode.

4.2 Algorithms
In this subsection we describe the warmup algorithms
we select, and how we select them. The results in Sec-
tion 3 help us design several cache warmup algorithms:
Implication-1suggests that keeping track of the recently

5



Parameter Category Value
Cache SizeSCache System Setting 25, 50, 75, 100%
Warmup SizeSWarmup Bonfire Setting 5, 10, 25%
Warmup Region Size Bonfire Setting 4 KB, 1 MB
ConvergeThV Metrics Threshold 70, 80, 90%
ConvergeThN Metrics Threshold 1, 3, 5%

Table 2: Simulation ParametersCache size and warmup
size are percentage of working set size of each trace.

accessed blocks may benefit warmup,Implication-2sug-
gests that the I/O accesses from the previous day may ben-
efit warmup.
Last-K: This scheme tracks the lastk regions accessed in
a trace. This algorithm is designed for hourly reaccesses
that exhibit a high degree of reuse in the recent past; since
Last-K chooses the most recently accessed regions, it im-
itates an LRU state thereby matching our goal to warmup
the cache to be similar to an always-warm LRU cache.
First-K: This scheme tracks the firstk regions of the past
24 hours. This algorithm is designed for daily reaccesses,
since it chooses the same time period from the previous
day to warm up the current day.
Top-K: This algorithm tracksk most frequent regions ac-
cessed in the past 24 hours. This algorithm is a frequency-
based algorithm. It serves as a comparison algorithm
when no temporal trace behavior knowledge is known.
Random-K: This scheme simply tracksk random regions
accessed in the past 24 hours. This algorithm serves as a
comparison algorithm when we have no prior knowledge
of the trace behavior.

We compare the performance of each algorithm with a
cold cache that is warmed up on demand and an always-
warm cache. We also consider disk prefetching and com-
pare all algorithms with and without disk prefetching

4.3 Simulation Results
We make three observations with our simulation study.
First, cache warmup reduces the time needed for a new
cache to match the behavior of an always-warm cache.
Second, even during cache warmup, server load is reduced
compared to a cold cache. Third, certain workload fea-
tures can be used to match the workload to the most ef-
fective warmup algorithm.

4.3.1 Simulation Experiments
We replay traces using a cache simulator with LRU re-
placement policy. We split each week-long trace into
seven day-long traces; all our algorithms use the data from
the previous day to warmup the current day, since from
our analysis in Section 3 most reaccesses happen within
one day. We vary several parameters in our simulation:
cache size, warmup data size, warmup region size, and
convergence thresholds. The configuration parameters are
listed in Table 2; we choose a small set of reasonable
values for each parameter and perform experiments with
each algorithm on all combinations of the parameters.

4.3.2 Overall Improvement
We first present the overall results of cache warmup and
the effect of different configurations on cache warmup.
Table 3 shows the results of the convergence time and the
server load reduction with different configurations. Server
load reduction is measured over the convergence time pe-
riod of the cold cache for all schemes. We perform ex-
periments with all combinations of parameter values but
only present the smallest and the biggest values of each
parameter in the table. For each configuration, we select
the result of the best algorithm for each trace and then
calculate the median values over all traces.

The pre-load time Bonfire uses to load warmup data
into the new cache is dependent on real storage system
and data layout. As an optimization for fast warmup data
load, we propose the use of a performance snapshot in
Section 5 to store the warmup data in a contiguous space
and load it in bulk. For the simulation, we perform a sim-
ple estimation of Bonfire pre-load time (Tpreload) by us-
ing 100 MB/s hard disk sequential read throughput and
the warmup data size. With this calculation, the median
pre-load time is 5.2 minutes when warmup data is 25%
of the working set size (WSS) of the traces and 1 minute
when warmup data is 5% of the WSS; in both cases, pre-
load time is much smaller compared to the convergence
time (hours). We explore more details about the actual
warmup data pre-loading time with real experiments in
Section 6.3.

Overall, we find that Bonfire reduces both convergence
time and server I/O load over the on-demand approach
(cold). Bonfire improves the convergence time by 14% to
100% (Column 8 in Table 3) and has 44% to 228% more
server load reduction (Column 12 in Table 3) than cold.

Comparing different parameters, we find that Bonfire
has bigger improvement over cold when the cache size is
smaller. Specifically, usingThV of 90% andThN of 5%,
the average Bonfire convergence time improvement for a
small cache is 90% and the improvement for a large cache
is 65%. Bonfire also reduces the server load for small
caches; usingThV of 90% andThN of 5%, the average
load reduction is 75% for a small cache and 63% for a
large cache. As expected, bigger warmup size increases
the pre-load time but results in better Bonfire warmup,
since more data is brought into cache for warmup.

A lower violation thresholdThV and a higher conver-
gence thresholdThN lead to a looser convergence time
criteria, resulting in better Bonfire improvement in terms
of convergence time. For example, the average conver-
gence time improvement forThV of 90% andThN of 5%
is 77% and the average improvement usingThV of 90%
andThN of 1% is 42%. We also find that 1 MB region
size gives better results than 4 KB region size.

We also evaluate the impact of disk prefetching with all
the schemes; disk prefetching uses readahead of a 128 KB

6



SCache SWarmup ThV ThN
Tpreload Tconverge Server Load Reduction (%)

(min) Cold (hr) Bonfire (hr) Improve (%) Cold Always-Warm Bonfire Improve

100

25
90

5 5.2 19 4.6 76 33 99 70 112
1 5.2 21 17 19 34 99 59 79

70
5 5.2 18 3.7 79 28 99 70 150
1 5.2 21 11 48 33 99 63 91

5
90

5 1.0 19 8.9 53 33 99 56 70
1 1.0 21 18 14 34 99 49 44

70
5 1.0 18 5.0 72 28 99 55 96
1 1.0 21 18 14 33 99 49 48

25

25
90

5 5.2 18 0 100 27 88 83 207
1 5.2 19 5.7 70 25 74 78 212

70
5 5.2 8.4 0 100 24 88 77 221
1 5.2 19 5.3 72 25 70 82 228

5
90

5 1.0 18 3.6 80 27 88 67 148
1 1.0 19 6.8 64 25 74 65 160

70
5 1.0 8.4 0 100 25 88 64 156
1 1.0 19 7.0 63 25 70 68 172

Table 3:Overall Simulation ResultsWarmup region size is set to 1 MB for all results in the table.Tpreload denotes the time (in
minutes) Bonfire uses to load the warmup data into the new cache. BonfireTconverge Improvement is calculated as the percentage
of ColdTconverge minus BonfireTconverge and BonfireTpreload over ColdTconverge. Server Load Reduction is calculated during
the ColdTconverge time for all schemes (Cold, Always-Warm, and Bonfire).

C
on

ve
rg

en
ce

 T
im

e 
(h

ou
r)

0

4

8

12

16

20

24

mds1 prn1 proj1 proj2 proj4 src11 usr1 usr2

cold lastk firstk topk randomk

Figure 6:Convergence Time

S
er

ve
r 

Lo
ad

 R
ed

uc
tio

n 
(%

)

0

20

40

60

80

100

mds1 prn1 proj1 proj2 proj4 src11 usr1 usr2

cold warm lastk firstk topk randomk

Figure 7:Server I/O Load Reduction

prefetching size. With prefetching, the convergence time
and the server load reduction of the cold cache is better
than those without prefetching. We find that disk prefetch-
ing lowers the benefit of cache warmup in some cases, but
cache warmup still provides an improvement of up to 62%
in convergence time and up to 228% in server load reduc-
tion over the cold cache. We do not present the detailed
prefetching results due to space constraints.

4.3.3 Algorithm Comparison
We now study the effect of different algorithms on dif-
ferent traces. In this calculation, we fix cache size to 50%
WSS, warmup size to 10% WSS, violation thresholdThV

to 80%, convergence thresholdThN to 3%, and warmup
region size to 1 MB, a reasonable and common cache set-
ting that uses parameter values in the middle of the pa-
rameter value range.
Convergence time: We plot the convergence time of
day five of each trace with a cold cache and with caches
warmed by different algorithms in Figure 6. We find that
all algorithms improve or are the same as cold caches for
all traces. Last-K is the best algorithm in terms of con-
vergence time (small is better) for most traces and Top-K

performs the worst. For example, formds1, proj1, src11,
andusr2 traces, the Last-K algorithm reduces the conver-
gence time to zero. These traces have a significant amount
of hourly reaccesses. For theweb2trace, the convergence
time of the cold cache is zero on day five; therefore no
improvement is possible for any algorithm.
Server Load Reduction: We then study the server load
reduction and plot the reduction percentage of day five
of each trace with a cold cache, an always-warm cache,
and caches warmed up by different algorithms in Figure 7.
Server load reduction is measured over the convergence
time period of the cold cache for all schemes. We find
that all algorithms reduce more server load than the cold
cache (bigger is better). In some cases, Bonfire algorithms
outperform the always-warm cache. Since Bonfire uses a
1 MB warmup region size and the cache uses 4 KB block
size, Bonfire has the effect similar to prefetching. Even in
terms of server load reduction, we find Last-K to be the
best algorithm in general.
Daily Reaccesses:In Figures 6 and 7, we use the orig-
inal trace days which start at 5PM every day. However,
the daily reaccesses happen at other times. To evaluate
the effect of daily reaccesses, we shift the daily reac-

7



Known 
Daily 
Pattern

During 
Daily 
Event

Hourly 
Reaccess

Reuse 
Distance 
Small

First K

Big 
Region 
Size

Yes

Yes

No

Last K

Last K
Best Convergence

Top K
Best hitrate

First K

Yes

Yes

No

No

Yes No

No

Figure 8:Algorithm Decision Tree Dotted boxes imply that
wall clock time needs to be taken into consideration.

cessed traces so that the per-day traces start right before
the daily reaccess events. We find that First-K is the best
for daily reaccesses. They have the same convergence
time as Last-K; the server load reduction of First-K is
110% while that of Last-K is 87%.
Algorithm Decision Tree: We use the simulation re-
sults for various parameter settings and correlate them
with workload behavior in Section 3 to formulate a de-
cision tree (Figure 8) to choose the best performing al-
gorithm based on workload properties. Overall, we find
that Last-K works well for most traces. For traces with a
known daily pattern, First-K works best when the cache
is started just before the recurring daily event. For traces
with hourly reaccesses, Last-K works the best. It is also
the best algorithm for traces with other reaccesses with
small reuse distance. When reuse distance is big, First-K
works well when the warmup region size is small and
Last-K and Top-K work well when the region size is big;
these cases are rare in the traces.

4.4 Key Findings
1. Cache warmup is effective in both improving conver-

gence time and server load reduction.
2. Last-K is the best algorithm in general and First-K

works better for known recurring daily patterns.

5 Bonfire Architecture
The Bonfire architecture is guided by three design princi-
ples: maintaining low overhead during normal operation,
providing fast warmup when starting a new cache, and us-
ing a general design that is broadly applicable to a range
of storage-level cache warmup scenarios. Sections 3 and
4 show that the Last-K algorithm provides the best benefit
overall across a variety of traces. Hence, Bonfire uses the
Last-K algorithm.

Figure 9 presents the overall Bonfire architecture. Bon-
fire runs in the storage server below its buffer cache;
it monitors all block I/Os sent from the storage system

Storage System

Data Volumes

Bonfire Monitor

In-Memory 

Staging Buffer

I/O

Warmup Metadata

Logging Volume

Performance 

Snapshot

0

12

n

Metadata Log

Storage Server Buffer Cache

I/O

Warmup Data

Figure 9:Bonfire Architecture The warmup metadata flows
are shown with solid lines and data flows with dotted lines.

buffer cache to the storage data volumes. It consists of
two components: a small in-memory staging buffer and
a local logging volume (e.g., a volume on a hard disk
or on an SSD). Bonfire works in two phases: amonitor-
ing phasewhere Bonfire tracks the recently used (Last-K)
blocks of data for future cache warmup, and awarmup
pre-load phasewhen Bonfire uses the monitored infor-
mation to efficiently load the warmup data blocks into
the cache. Bonfire uses two key insights in its design.
It leverages the storage system buffer cache to provide a
list of recently accessed blocks (Last-K). To achieve fast
preloading, Bonfire uses theperformance snapshotto lay-
out warmup data on the logging volume such that it can
be read sequentially to provide faster warmup. We explain
the details of each phase in more detail next.

5.1 Monitoring Phase
Bonfire monitors the recently accessed blocks (Last-K) by
logging the block I/O sent from the storage system buffer
cache to the backend data storage. This approach is ad-
vantageous in several ways. The buffer cache maintains
its contents using an LRU-like replacement policy; the
stream of buffer cache I/Os are thus suited to track a tem-
poral pattern. With this insight, Bonfire does not need to
maintain additional data structures. In addition, Bonfire is
not in the performance-critical path as it monitors buffer
cache loads; a properly configured system has few cache
loads and cache loads already incur a disk read penalty.
Another optimization Bonfire performs is to stage the
warmup metadata in an in-memory staging buffer before
flushing to a logging volume; the staging allows for large
sequential writes to the logging volume.

By only recording warmup metadata (metadata-only),
one has to read the block contents from the underlying
disks during warmup pre-loading. However, the original
block contents may be scattered randomly on the back-
end data disks resulting in many random I/Os. To re-
duce pre-load time, Bonfire can write warmup data to a

8



performance snapshotin the logging volume in addition
to the warmup metadata (metadata+data). Performance
snapshots trade off faster warmup pre-loading time for in-
creased logging volume space and bandwidth. Specifi-
cally, we store the data read and written below the server
buffer cache in an in-memory data staging buffer and flush
it to the performance snapshot when it is full. The latest
data is written to the end of the performance snapshot;
during warmup only the latest data is used.

5.2 Warmup Pre-load Phase
Bonfire pre-loads a new cache using its warmup logs for
a user specified warmup data size, e.g., 25% of the size of
the new cache. The cache warmup proceeds in one of two
ways depending on what information was logged during
the monitoring phase.

With a metadata-onlylog, Bonfire reads the circular
metadata log from the most recently written metadata to
the least recently written ones. After all the metadata is
read into memory, it adds the contents of the staging meta-
data buffer. After sorting all the metadata and removing
duplicate LBAs, Bonfire reads the warmup data from orig-
inal data disks and writes them into the new cache.

With a metadata+datalog, Bonfire first loads the
warmup data in the staging buffer to the new cache. It
then reads each chunk of the metadata log and the corre-
sponding data log on the logging volume into memory in
reverse time order; most recently written data is read first.
If a block LBA has not been seen before, Bonfire writes
it to the new cache. Since most recently written logs are
read first and loaded into the new cache first, we make
sure that no stale data is written in the new cache.

If during warmup the staging buffer content is unavail-
able, we only use the warmup metadata and data from the
logging volume. If the logging volume is unavailable, the
warmup process falls back to the on-demand warmup.

6 Evaluation
In this section, we describe our implementation of the
Bonfire prototype and present our experimental evalua-
tion. Our goal is to measure the benefit of Bonfire in re-
ducing cache warmup time, server load, client perceived
read performance, and to understand the cost associated
with these improvements.

We implement the Bonfire prototype as a user space
trace-replay program. As the MSR-Cambridge traces are
captured below the storage server’s buffer cache, replay-
ing them accurately simulates the I/O stream from buffer
cache to the backend data disks [19]. Our trace replay is-
sues synchronous I/Os and ignores request time, allowing
our experiments to finish faster and be independent of the
hardware environment. We implement both the logging
schemes of Bonfire:metadata-onlyandmetadata+data.
In our experiments, we first load the cache warmup data

into the new cache and then let the foreground workloads
use the warmed cache.

We compare Bonfire with the warm cache that has been
running from the beginning of the traces (always-warm)
and the cold cache which is warmed up on demand after
the new cache starts (cold).

Experimental environment: Experiments were con-
ducted on a 64-bit Linux 3.3.4 server, which uses a
2.67 GHz Intel Xeon X5650 processor and 32 GB of
RAM. The data storage consists of three concatenated
500 GB 7200 rpm SATA hard drives. We use a separate
hard disk as the logging volume. The storage-level cache
in all our experiments is a 256 GB DRAM. Since all our
experiments use synthetic workloads and trace replays,
they are not dependent on the content of the datasets.
Thus, we allocate a small in-memory buffer as the cache
to read or write data with random content. With this ap-
proach, we can measure the overhead of accessing the
DRAM cache and also emulate large storage-level cache
sizes.

6.1 Synthetic Workload
We first evaluate our Bonfire prototype using a synthetic
Zipf workload [9], which provides a controlled way to ex-
amine the effect of different cache warmup schemes. We
generate a trace of five million 4 KB reads with the Zipf
distribution, usingα = 0.4 andN = 50GB; its working
set size is 4.8 GB. We then split the trace equally into two
sub-traces. In the first half, no storage-level cache is used
for thecold or the Bonfire schemes but thealways-warm
scheme begins to use the storage-level cache. For the cold
and the Bonfire schemes, we trigger a new storage-level
cache creation and initiate warmup for Bonfire at the end
of the first half.

Reduction in Server Load: Figure 10 presents the
read hit-rate against the number of I/Os forcold, always-
warm, and Bonfire; higher read hit-rate imply less server
load. We vary the amount of warmup data fetched by Bon-
fire from 25% to 100% of the working-set size. Thecold
scheme fetches the blocks on demand after the creation of
the new cache at the 2.5M I/O mark, resulting in it achiev-
ing a hit rate of 84% at the end of the trace.Cold falls
behind and does not reach the hit-rate of thealways-warm
scheme (96%) by the end of the trace, using aThV of 10%
andThN of 3%. In contrast, Bonfire fetches the data in
bulk and pre-loads the cache. If the warmup size is limited
to 25%, Bonfire achieves a hit-rate above 90% ofalways-
warmat the 4M I/O mark. Larger warmup enables faster
hit-rate convergence; Bonfire with 50% warmup data con-
verges at the 3.6M mark I/O mark; a 75% warmup size
allows Bonfire to converge at the 2.8M I/O mark. Bonfire
with a 100% warmup size converges immediately at the
2.5M I/O mark.

9



Num of I/Os (x1000000)

0 1 2 3 4 5

R
ea

d 
H

it 
R

at
e 

(%
)

0

20

40

60

80

100

always−warm
cold
Bonfire_100%
Bonfire_75%
Bonfire_50%
Bonfire_25%

Figure 10:Read hit rate of the Zipf workload
Num of I/Os (x1000000)

0 1 2 3 4 5

R
ea

d 
La

te
nc

y 
(m

s)

0

1

2

3

4

5

6

7 always−warm
cold
Bonfire_Metadata
Bonfire_Metadata+Data

Figure 11:Read latency of the Zipf workload

Num of I/Os (x1000000)
0 1 2 3 4

R
ea

d 
H

it 
R

at
e 

(%
)

0

20

40

60

80

100

cache starts

always−warm
cold
Bonfire

Figure 12:Read hit rate of Day 5 and 6 ofproj1

Num of I/Os (x1000000)
0 1 2 3 4

R
ea

d 
La

te
nc

y 
(m

s)

0

0.5

1

1.5

2

cache starts

always−warm
cold
Bonfire

Figure 13:Read latency of Day 5 and 6 ofproj1

Num of I/Os (x1000000)
0 0.4 0.8 1.2R

ea
d 

H
it 

R
at

e 
(%

)

0

20

40

60

80

100

cache starts

always−warm
cold
Bonfire

Figure 14:Read hit rate of Day 5 and 6 ofweb2

Num of I/Os (x1000000)
0 0.4 0.8 1.2R

ea
d 

La
te

nc
y 

(m
s)

0

0.5

1

1.5

2

cache starts

always−warm
cold
Bonfire

Figure 15:Read latency of Day 5 and 6 ofweb2

Improvement in Application Performance: We also
compare the read latencies of thecold, thealways-warm,
and the Bonfire warmed cache. Figure 11 plots the read
latency over the number of I/Os. Bonfire achieves per-
formance equal to thealways-warmscheme (averaging at
0.5 ms) after the new cache starts, while thecold scheme
averages at 2.6 ms.

6.2 Trace-Based Workloads
Next, we examine Bonfire performance using theproj1
andweb2traces from the set of MSR-Cambridge traces.
We select these two traces because they exhibit different
properties. Theproj1 trace has more I/Os and a large
working set but lower reaccess rate than theweb2trace
(see Table 1). From our analysis in Section 3, we also find
that proj1 exhibits mainly hourly reaccesses; theweb2
trace exhibits both daily reaccesses and reaccesses that
are more than one day. Theproj1 trace also helps to
stress Bonfire since it has a working set size (642 GB)
that is larger than our storage-level cache size (256 GB).
We replay day one to day six of theproj1 andweb2traces
and enable the storage-level cache forcold and Bonfire
at the beginning of day 6; thealways-warmscheme uses

the storage-level cache from day 1. Theproj1 andweb2
traces provide realistic workloads that can vary signifi-
cantly over time; specifically, the hit-rate ofproj1 fluc-
tuates wildly during day 6 and stabilizes at the end.

Reduction in Server Load: We examine the read hit-
rate to determine how Bonfire reduces storage server load.
Figure 12 presents the read hit rates ofalways-warm, cold,
and Bonfire over number of I/Os with theproj1 trace.
We find that thecold cache does not converge with the
always-warmcache until around 2.7M I/Os after the new
cache starts (at around 0.9M I/Os). In contrast, Bonfire
converges around 1.1M I/Os after the new cache starts (a
59% improvement). Figure 12 also shows two interesting
results. First, we see that with Bonfire the read hit rate
immediately increases when the new cache starts while
with the cold scheme, the read hit rate increases gradually.
However, the workload fluctuations cause the hit-rate to
drop thereby delaying convergence time for Bonfire until
the 2.1M I/O mark. Second, after Bonfire converges, the
hit rate improves and matches the hit-rate of thealways-
warm cache, while the hit rate of the cold scheme drops
again at around the 3M I/O mark. The segment after 3M

10



Zipf proj1 web2
Metadata-Only Metadata+Data Metadata-Only Metadata+Data Metadata-Only Metadata+Data

Log Vol Space 19 MB 9.5 GB 20 MB 9.9 GB 71 MB 36 GB
Avg Log Vol B/W 194 KB/s 97 MB/s 9.1 KB/s 4.6 MB/s 476 KB/s 238 MB/s
Pre-Warm Time 132 s 126 s 184 s 130 s 1224 s 664 s

Table 4:Bonfire Overheads

I/Os uses data that may have been accessed before the
new cache is inserted. Both the always-warm and Bonfire
would do well as they have captured the history, while the
cold scheme will have more cache misses.

Similarly, forweb2, Figure 14 presents the read hit rates
of the three schemes. With Bonfire, the read hit rate in-
creases right after the new cache is added and converges
with always-warm after 0.2M I/Os. With the cold scheme,
read hit rate stays around zero after the new cache starts.

Improvement in Application Performance: Fig-
ure 13 presents the latency results of theproj1 trace. We
see similar effect of Bonfire with respect to read latency
as with read hit rate. Thecold scheme has two areas with
high read latency: one around the 1M I/O mark and an-
other around the 3M I/O mark; these correspond with its
low read hit rate regions. While Bonfire converges at the
2M I/O mark, the read latency before it converges is com-
parable with the latency of thealways-warmscheme.

Figure 15 presents the latency results of theweb2trace.
Similar to its read hit rate results, we see that with Bon-
fire, the read latency drops after the new cache starts. The
read latency ofcold stays around 0.6 ms. Theweb2trace
contains mostly sequential I/Os; even though the read hit
rate is low for thecoldscheme, reading data from backend
disks is reasonably fast.

6.3 Overhead Analysis
We quantify the Bonfire overhead in terms of fixed and
variable costs. The fixed costs include the metadata and
the data staging buffer, whose sizes can be configured by
user. Bonfire also imposes a variable cost based on the
workload. Logging warmup metadata and data adds band-
width and storage space overhead; pre-loading warmup
data to the new cache extends the time when the fore-
ground workload can start to use the new cache.

Table 4 presents the overhead of the Zipf workload, the
proj1 trace, and theweb2 trace with themetadata-only
and themetadata+datalogging schemes, when the log-
ging metadata buffer size is 256 KB and the logging data
buffer size is 128 MB. We measure the amount of logging
data generated over time and use the original request ac-
cess times in theproj1 andweb2traces to calculate log-
ging bandwidth. For the Zipf workload, we assume an
intense foreground I/O speed of 1 Gbps.

Overall, we find larger monitoring overhead and faster
warmup data pre-loading with themetadata+datascheme
than themetadata-onlyscheme. For the Zipf work-
load, we see a high demand for logging volume band-
width when using themetadata+datascheme, averaging

at 97 MB/s. The benefit ofmetadata+datascheme on
warmup data loading time is small. The Zipf workload
is drawn from a 50 GB logical address space and has a
small working set; reading the warmup data from backend
data disks is not much slower than reading it sequentially
from the performance snapshot. For theproj1 andweb2
traces, themetadata+dataoffers more benefit, improv-
ing warmup loading time by 29% and 46%. Both traces
have larger logical address spaces than the Zipf work-
load; warmup data is more likely to be random and read-
ing it from backend disks is slower. However, forweb2,
metadata+datahas a high logging bandwidth. Themeta-
data+datascheme logs all foreground I/Os; its logging
bandwidth is thus dependent on the workload I/O band-
width. Theweb2trace has intensive I/Os, resulting in its
high metadata+dataoverhead. Therefore, when there are
more idle times in the I/O requests and when the data logi-
cal address space is large, themetadata+datascheme may
offer more benefit for a fast cache warmup.

Next, we study the trace completion time of different
schemes. For the Zipf workload, thecoldscheme runs for
1.8 hours while Bonfire using themetadata-onlyscheme
and Bonfire using themetadata+datascheme both com-
plete in 23 minutes, including pre-load time. For theproj1
trace, thecold scheme runs for 13 minutes while Bonfire
using themetadata-onlyscheme and themetadata+data
scheme completes in 9.5 minutes and 12 minutes. We
find that for both the Zipf workload and theproj1 trace,
the cost of Bonfire pre-loading plus the foreground work-
load run time is still smaller than the on-demand warmup
time, suggesting that Bonfire uses the backend disks more
efficiently leading to the performance improvement.

For theweb2trace, thecold scheme runs for 6.5 min-
utes; Bonfire using themetadata-onlyscheme and the
metadata+datascheme completes in 25 minutes and 19
minutes. The read latency ofcold with the web2 trace
is much lower than with the Zipf workload and theproj1
trace because of its I/O sequentiality. However, theweb2
trace requires a high overhead of Bonfire logging and pre-
loading (see Table 4), resulting in Bonfire running longer
than thecold scheme. To reduce the Bonfire overhead,
the workload idle time can be utilized to perform logging
and pre-loading; flash-based SSDs can also be used as the
logging volume.

Finally, we study the effect of the staging buffer size
and vary the metadata buffer size from 64 KB to 1 MB.
The data buffer size is proportional to the metadata one
and vary from 32 MB to 512 MB. When the staging buffer

11



is big, we find that less data is written to the perfor-
mance snapshot; 512 MB data buffer size has up to 25%
reduction in total warmup data written as compared to the
32 MB size. With bigger staging buffer, more overwrites
can be absorbed in the buffer. During warmup time, Bon-
fire also benefit from a bigger staging buffer; less data
needs to be read from the smaller performance snapshot
and a larger part of the warmup data is still in the mem-
ory staging buffer. With 512 MB data buffer, warmup time
improves up to 50% as compared to the 32 MB one. Over-
all, we find that larger staging buffer benefit both the mon-
itoring and the warmup phase. However, a big staging
buffer consumes more memory. Moreover, if the staging
buffer is unavailable during warmup, more warmup data
is lost with bigger staging buffer. Therefore, we choose to
use 256 KB metadata and 128 MB data staging buffer.

6.4 Summary
Our evaluation of the Bonfire prototype with a synthetic
workload and two real traces shows that Bonfire largely
reduces the cache warmup time over a cold cache that
is warmed up on demand and increases cache read hits.
These benefits come with a small fixed monitoring mem-
ory overhead and a small logging space and bandwidth
overhead when using themetadata-onlyscheme. The
metadata+datascheme has a higher logging overhead, es-
pecially when there is little I/O idle time, but allows faster
warmup data pre-loading time.

7 Related Work
We present the related work including workload studies,
storage-level cache usage, and existing approaches to fast
cache warmup.
Workload studies: Workload studies can provide valu-
able data needed to make informed design decisions. A
number of workload studies have addressed caching to
varying degrees. The most related is an analysis of dis-
tance between reaccesses by Zhou et al. [29]; their goal
is to understand how it changes across multiple levels of
cache to develop the Multi-Queue cache replacement al-
gorithm. Adams et al. [3] focused on long-term behavior,
over a coarser time-frame. Ellard et al. [11] examined
NFS traces and examined caching as it pertains to block
lifetimes. Roselli et al. [25] focused on caching with re-
gard to disk performance. Recently, Harter et al. [17]
studied the I/O behavior of Apple desktop applications.
Storage-level cache: Storage-level caches are becom-
ing common in modern storage systems. Memcached is
a distributed memory caching system that has been used
widely by different systems [13]. Suggestions have been
proposed to use application-level scripts to pre-populate
important data to warm the cache [1, 2]. Similarly, Ama-
zon ElastiCache provides distributed in-memory caches in
the cloud, and relies on redundancy to reduce the effect of
warmup times [5].

RAMCloud [23] is a storage architecture that stores all
data in DRAM to consistently achieve low-latency access.
RAMCloud maintains disk or flash-based backups that are
used for recovering from failures [23]. Bonfire-like cache-
warmup approaches may still apply in these scenarios.

The Rio file cache [10] enables memory contents to
survive crashes, thereby reducing write traffic to storage.
However, Rio does not handle restarts with loss of power
or those involving hardware upgrades. Further, warmup
scenarios such as dynamic cache creation would not ben-
efit from Rio.
Cache warmup techniques: Windows SuperFetch is
a technique to reduce system boot time and application
launch time by pre-loading commonly used boot sequence
and applications into memory based on history usage pat-
tern. Bonfire is similar to SuperFetch in that it also pre-
loads warmup data and uses the access pattern in history.
However, Bonfire is different from SuperFetch in sev-
eral ways. First, Bonfire monitors and warms up storage-
level caches, which is much bigger than traditional buffer
caches. Second, Bonfire monitors all workloads below the
server buffer cache instead of at the application level. Fi-
nally, Bonfire can choose to use the performance snapshot
to further improve the warmup time.

8 Conclusion
Large caches are becoming the norm in the storage stack.
When they are empty, they serve little purpose. Unfortu-
nately, a combination of scale and dynamism in today’s
data centers is causing caches to be empty more often.
Therefore, the process of warming caches needs to be
studied in detail.

As a first step, we analyze server-side workload traces
and quantify key workload characteristics that can be used
to design warmup mechanisms. We propose Bonfire to
effectively and efficiently bulk-load storage-level caches
with useful data. We find from experiments that Bonfire
reduces the time needed for the cache to reach the perfor-
mance level of an “always-warm” cache. Further, Bonfire
greatly reduces the load on the backend storage. The run-
time overhead due to Bonfire is also small, thus making it
viable for a large number of workloads.

We believe that the techniques we use in Bonfire can
also be extended to other cache warmup scenarios, such
as client-side cache warmup and virtual machine restarts;
we leave it as our future work.

Acknowledgments
We thank the anonymous reviewers and Eno Thereska (our shep-
herd) for their tremendous feedback and comments, which have
substantially improved the content and presentation of this pa-
per. We also thank the members of the NetApp Advanced Tech-
nology Group and the ADSL research group for their insightful
comments.

12



References
[1] A Rant about Proper Memcache Us-

age. http://joped.com/2009/03/
a-rant-about-proper-memcache-usage/.

[2] Memcached Warmup Scripts. http://www.
pablowe.net/2008/07/memcached/.

[3] I. F. Adams, M. W. Storer, and E. L. Miller. Analy-
sis of Workload Behavior in Scientific and Historical
Long-Term Data Repositories.ACM Transactions
on Storage (TOS), 8(2), May 2012.

[4] Amazon. Amazon EC2 Service Level Agreement.
http://aws.amazon.com/ec2-sla.

[5] Amazon. Amazon ElastiCache.http://aws.
amazon.com/elasticache/.

[6] Amazon. Amazon Simple Storage Service (Amazon
S3). http://aws.amazon.com/s3/.

[7] L. N. Bairavasundaram, G. Soundararajan,
V. Mathur, K. Voruganti, and K. Srinivasan.
Responding Rapidly to Service Level Violations
Using Virtual Appliances.ACM SIGOPS Operating
Systems Review, 46(3):32–40, December 2012.

[8] S. Bansal and D. S. Modha. CAR: Clock with
Adaptive Replacement. InProceedings of the 3rd
USENIX Symposium on File and Storage Technolo-
gies (FAST ’04), San Francisco, California, April
2004.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web Caching and Zipf-like Distribu-
tions: Evidence and Implications. InEighteenth An-
nual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 1999), New
York, New York, March 1999.

[10] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Ra-
jamani, and D. Lowell. The Rio File Cache: Sur-
viving Operating System Crashes. InProceedings
of the 7th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS VII), Cambridge, Massachusetts,
October 1996.

[11] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Pas-
sive NFS Tracing of Email and Research Workloads.
In Proceedings of the 2nd USENIX Symposium on
File and Storage Technologies (FAST ’03), San Fran-
cisco, California, April 2003.

[12] EMC. EMC Symmetric VMAX 20K Stor-
age System. http://www.emc.com/
collateral/hardware/data-sheet/
h6193-symmetrix-vmax-20k-ds.pdf.

[13] B. Fitzpatrick. Distributed Caching with Mem-
cached.Linux Journal, 2004(124):5, August 2004.

[14] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-
A. Truong, L. Barroso, C. Grimes, and S. Quinlan.
Availability in Globally Distributed Storage Sys-
tems. InProceedings of the 9th Symposium on Op-
erating Systems Design and Implementation (OSDI
’10), Vancouver, Canada, December 2010.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. InProceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP ’03), Bolton Landing, New York, October
2003.

[16] B. S. Gill. On Multi-level Exclusive Caching: Of-
fline Optimality and Why Promotions Are Better
than Demotions. InProceedings of the 6th USENIX
Symposium on File and Storage Technologies (FAST
’08), San Jose, California, February 2008.

[17] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. A Fiel is Not
a File: Understanding the I/O Behavior of Apple
Desktop Applications. InProceedings of the 23rd
ACM Symposium on Operating Systems Principles
(SOSP ’11), Cascais, Portugal, October 2011.

[18] J. McHugh. Amazon S3: Architecting for Resiliency
in the Face of Massive Load. InThe Annual Inter-
national Software Development Conference (QCon
’09), San Francisco, California, November 2009.

[19] D. Narayanan, A. Donnelly, and A. Rowstron. Write
Off-Loading: Practical Power Management for En-
terprise Storage. InProceedings of the 6th USENIX
Symposium on File and Storage Technologies (FAST
’08), San Jose, California, February 2008.

[20] D. Narayanan, A. Donnelly, and A. Rowstron. Pri-
vate Conversation, September 2012.

[21] D. Narayanan, A. Donnelly, E. Thereska, S. El-
nikety, and A. Rowstron. Everest: Scaling Down
Peak Loads Through I/O Off-Loading. InProceed-
ings of the 8th Symposium on Operating Systems
Design and Implementation (OSDI ’08), San Diego,
California, December 2008.

13



[22] NetApp. FAS6200 Series Technical Specifi-
cations. http://www.netapp.com/us/
products/storage-systems/fas6200/
fas6200-tech-specs.html.

[23] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ouster-
hout, and M. Rosenblum. Fast Crash Recovery
in RAMCloud. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP
’11), Cascais, Portugal, October 2011.

[24] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodol-
sky, and J. Zelenka. Informed Prefetching and
Caching. InProceedings of the 15th ACM Sym-
posium on Operating Systems Principles (SOSP
’95), Copper Mountain Resort, Colorado, December
1995.

[25] D. Roselli, J. R. Lorch, and T. E. Anderson. A Com-
parison of File System Workloads. InProceedings of
the USENIX Annual Technical Conference (USENIX
’00), San Diego, California, June 2000.

[26] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: a
Lightweight, Consistent and Durable Storage Cache.
In Proceedings of the EuroSys Conference (EuroSys
’12), Bern, Switzerland, April 2012.

[27] M. Wachs and M. Abd-El-Malek. Argon: Perfor-
mance Insulation for Shared Storage Servers. In
Proceedings of the 5th USENIX Symposium on File
and Storage Technologies (FAST ’07), San Jose, Cal-
ifornia, February 2007.

[28] T. M. Wong and J. Wilkes. My Cache or Yours?
Making Storage More Exclusive. InProceedings of
the USENIX Annual Technical Conference (USENIX
’02), Monterey, California, June 2002.

[29] Y. Zhou, J. F. Philbin, and K. Li. The Multi-Queue
Replacement Algorithm for Second Level Buffer
Caches. InProceedings of the USENIX Annual
Technical Conference (USENIX ’01), Boston, Mas-
sachusetts, June 2001.

Specifications are subject to change without notice. NetApp,
the NetApp logo, and Go further, faster are trademarks or reg-
istered trademarks of NetApp, Inc. in the United States and/or
other countries. Windows is a registered trademark of Microsoft
Corporation. Linux is a registered trademark of Linus Torvalds.
Intel and Xeon are registered trademarks of Intel Corporation.
All other brands or products are trademarks or registered trade-
marks of their respective holders and should be treated as such.

14


