Warming up Storage-level Caches with Bonfire

Yiying Zhang

Gokul Soundararajan
Mark W. Storer
Lakshmi N. Bairavasundaram
Sethuraman Subbiah
Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Does on-demand cache warmup still work?

How Long Does On-demand Warmup Take?

Read hit rate difference between warm cache and on-demand

^{*} Simulation results from a project server trace

To Make Things Worse

- Caches are critical
 - Key component to meet application SLAs
 - Reduce storage server I/O load
- Cache warmup happens often
 - Storage server restart
 - Storage server take-over
 - Dynamic caching [Narayanan'08, Bairavasundaram'12]

On-demand Warmup Doesn't Work Anymore What Can We Do?

Bonfire

- Monitors and logs I/Os
- Load warmup data in bulk

Challenges

- What to monitor & log? Effective
- How to monitor & log? Efficient
- How to load warmup data? Fast
- General solution

Storage System

Summary of Contributions

- Trace analysis for storage-level cache warmup
 - Temporal and spatial patterns of reaccesses
- Cache warmup algorithm design and simulation
- Implementation and evaluation of Bonfire
 - Up to 100% warmup time improvement over on-demand
 - Up to 200% more server I/O load reduction
 - Up to 5 times lower read latency
 - Low overhead

Outline

- Introduction
- Trace analysis for cache warmup
- Cache warmup algorithm study with simulation
- Bonfire architecture
- Evaluation results
- Conclusion

Workload Study – Trace Selection

- MSR-Cambridge [Narayanan'08]
 - 36 one-week block-level traces from MSR-Cambridge data center servers
 - Filter out write-intensive, small working set, and low reaccess-rate

Server	Function	#volumes
mds	Media server	1
prn	Print server	1
proj	Project directories	3
src1	Source control	1
usr	User home directories	2
web	Web/SQL server	1

Reaccesses: Read After Reads and Read After Writes

Questions for Trace Study

	Time	Space
Relative	Q1: What's the temporal distance?	Q3: What's the spatial distance? Any clustering of reaccesses?
Absolute	Q2: When do reaccesses happen (in terms of wall clock time)?	Q4: Where do reaccesses happen (in terms of LBA)?

Q1: What is the Temporal Distance?

Q1: What is the Temporal Distance?

A1: Two main reaccess patterns: Hourly & Daily In an hour, recent blocks more likely reaccessed

Q2: When Do Reaccesses Happen (Wall Clock Time)?

A2: Daily reaccesses at same time every day

Q3: What is the Spatial Distance?

A3: Spatial distance usually small for hourly sometimes small for other reaccesses

Q3: Any spatial clustering among reaccesses?

Percentage of 1MB regions that have reaccesses

A3: Daily reaccesses more spatially clustered

Trace Analysis Summary and Implications

	Time	Space
Relative	A1: Reaccesses have two main temporal patterns: within 1 hour, around 1 day	A3: Hourly reaccesses are close in spatial distance. Daily reaccesses exhibit spatial clustering.
Absolute	A2: Daily reaccesses correlate with wall clock time	A4: No hot spot of reaccesses in LBA space

- A1 Hourly: Use recently accessed blocks
- A1 and A2 Daily: Use same period from previous day
- A3 Small spatial distance: Size of monitoring buffer is small

Outline

- Introduction
- Trace analysis for cache warmup
- Cache warmup algorithm study with simulation
- Bonfire architecture
- Evaluation results
- Conclusion

Metrics: Warmup Time

Warmup period: Hit-rate convergence time

Metrics: Server I/O Reduction

- Storage server I/O load reduction
 - Amount of I/Os going to cache Total I/Os
 during convergence time
- Improvement in server I/O load reduction
 - Server I/O load reduction of Bonfire Server $\frac{I}{O}$ load reduction of On-demand

Cache Warmup Algorithms

- Last K regions accessed in the trace
- First-K: First K regions in the past 24 hours
- *Top-K*: K most frequent regions
- Random-K: Random K regions

Region:

granularity of monitoring and logging e.g., 1MB

Simulation Results - Overall

- LRU cache simulator with four warmup algorithms
- Convergence time
 - Improves 14% to 100%
- Server I/O load reduction
 - Improves 44% to 228%
- In general, *Last-K* is the best
- First-K works for special case (known patterns)

Outline

- Introduction
- Trace analysis for cache warmup
- Cache warmup algorithm study with simulation
- Bonfire architecture
- Evaluation results
- Conclusion

Bonfire Design

- Design principles
 - Low overhead monitoring and logging (efficient)
 - Bulk loading useful warmup data (effective and fast)
 - General design applicable to a range of scenarios
- Techniques
 - Last-K
 - Monitors I/O below the server buffer cache
 - Performance snapshot

Bonfire Architecture: Monitoring

Only store warmup metadata: metadata-only

Store warmup metadata and data:

metadata+data

Storage System

Bonfire Architecture: Bulk Cache Warmup

Storage System

Outline

- Introduction
- Trace analysis for cache warmup
- Cache warmup algorithm study with simulation
- Bonfire architecture
- Evaluation results
- Conclusion

Evaluation Set Up

- Implemented Bonfire as a trace replayer
 - Always-warm, on-demand, and Bonfire
 - Metadata-only and metadata+data
 - Replay traces using sync I/Os
- Workloads
 - Synthetic workloads
 - MSR-Cambridge traces

- Metrics
 - Benefits and overheads

Benefit Results - Read Hit Rate of MSR Trace

^{*} Results of a project server trace from MSR-Cambridge trace set

Benefit Results - Read Latency of MSR Trace

Lower read latency => better application-perceived performance

^{*} Results of a project server trace from MSR-Cambridge trace set

Overhead Results

Storage System

Proper Bonfire scheme

Overhead Results

and configuration 1/0 2 to 20 minutes Warmup Data **Bonfire Monitor Buffer** New 9KB/s to **In-memory** Cache Cache 476KB/s **Staging Buffer** 19MB to 71MB 256KB & 128MB Warmup Metadata 1/0 Warmu Data 4.6MB/s **Performance** to **Snapshot** 238MB/s 9.5GB to 36GB Logging **Data Volumes** Volume

Storage System

Summary of Results

- Faster cache warmup
 - 59% to 100% improvement over on-demand
- Less storage server I/O load
 - 38% to 200% more reduction than on-demand
- Better application-perceived latency
 - Avg read latency 1/5 to 2/3 of on-demand
- Small controllable overhead

Conclusion

On-demand warmup doesn't work anymore

Warm up terabytes of caches take days

Bonfire and beyond

- Client-side cache warmup
- Application-aware warmup
- •••

In need for more long big public traces!

Thank You

Questions?

http://research.cs.wisc.edu/adsl