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Does on-demand cache
warmup still work ?
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How Long Does On-demand Warmup Take?

e Read hit rate difference between warm cache and on-demand

8 T AT

|
On-demand warmup takes

=l ) L

|
0 ) |
16 20 \_Zi

4

Time (hour)

* Simulation results from a project server trace
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To Make Things Worse

e Caches are critical
= Key component to meet application SLAs
> Reduce storage server I/0O load

e Cache warmup happens often
o Storage server restart
= Storage server take-over
o Dynamic caching [Narayanan’08, Bairavasundaram’12]



On-demand Warmup Doesn’t Work Anymore
What Can We Do?

e Bonfire

= Monitors and logs |/Os Bonfi
onfire
= Load warmup data in bulk Monitor
Warmup
Information
e Challenges R
: Loggi
= What to monitor & log? Effective V‘;?f:,‘i

= How to monitor & log? Efficient

Storage System
= How to load warmup data? Fast

o General solution
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Summary of Contributions

» Trace analysis for storage-level cache warmup
= Temporal and spatial patterns of reaccesses

 Cache warmup algorithm design and simulation

* Implementation and evaluation of Bonfire
> Up to 100% warmup time improvement over on-demand
= Up to 200% more server 1/0 load reduction

= Up to 5 times lower read latency
= Low overhead



Outline

e Introduction

* Trace analysis for cache warmup

e Cache warmup algorithm study with simulation
e Bonfire architecture
e Evaluation results

e Conclusion



Workload Study — Trace Selection

° MSR—Cambridge [Narayanan’08]
= 36 one-week block-level traces from MSR-Cambridge data center servers
= Filter out write-intensive, small working set, and low reaccess-rate

Server Function #volumes
mds Media server 1
prn Print server 1
proj Project directories 3
srcl Source control 1
usr User home directories 2
web Web/SQL server 1

Reaccesses: Read After Reads
and Read After Writes
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Questions for Trace Study

= . . ) . q ?
Relative Q1: What's the temporal distance? 2>+ What's the spatial distance:
Any clustering of reaccesses?

Q2: When do reaccesses happen Q4: Where do reaccesses
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Q1: What is the Temporal Distance?

Time b/w Reaccesses for All Traces
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Q1: What is the Temporal Distance?

100 1 Hourly Dominated Hourly
Daily

Other
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Al: Two main reaccess patterns:

In an hour, recent blocks more likely reaccessed
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Q2: When Do Reaccesses Happen (Wall Clock Time)?
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A2: Daily reaccesses at same time every day
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Q3: What is the Spatial Distance?

Hourly Dominated
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A3: Spatial distance usually small for hourly

sometimes small for other reaccesses
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Q3: Any spatial clustering among reaccesses?

» Percentage of 1MB regions that have reaccesses
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A3: Daily reaccesses more spatially clustered
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Trace Analysis Summary and Implications

_ A3: Hourly reaccesses are
Al: Reaccesses have two main

_ close in spatial distance.
Relative temporal patterns:

o Daily reaccesses exhibit
within 1 hour, around 1 day _ ,
spatial clustering.

A2: Daily reaccesses correlate  A4: No hot spot of
Absolute

with wall clock time reaccesses in LBA space

e Al Hourly: Use recently accessed blocks
Al and A2 Daily: Use same period from previous day
e A3 Small spatial distance: Size of monitoring buffer is small
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Outline

e Introduction

e Trace analysis for cache warmup

e Cache warmup algorithm study with simulation
e Bonfire architecture
e Evaluation results

e Conclusion
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Metrics: Warmup Time

 Warmup period: Hit-rate convergence time

Read Hit Rate (%)
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Metrics: Server I/O Reduction

 Storage server I/O load reduction

Amount of 1/0s going to cache

- during convergence time
Total 1/0s

e Improvement in server |/O load reduction
Server 1/0 load reduction of Bonfire

]

Serveréload reduction of On—demand
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Cache Warmup Algorithms

e Last-K: Last K regions accessed in the trace
* First-K: First K regions in the past 24 hours

Region:
e Top-K: K most frequent regions granularity of
] monitoring
* Random-K: Random K regions and logging
I A I
[ |
1/0s AMW
e s >

€ 24 Hours >l Time

cache starts
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Simulation Results - Overall

e LRU cache simulator with four warmup algorithms

e Convergence time
= Improves 14% to 100%

e Server I/0O load reduction
= Improves 44% to 228%

* In general, Last-K is the best

 First-K works for special case (known patterns)
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Outline

e Introduction

e Trace analysis for cache warmup

e Cache warmup algorithm study with simulation
e Bonfire architecture
e Evaluation results

e Conclusion
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Bonfire Design

* Design principles
= Low overhead monitoring and logging (efficient)
= Bulk loading useful warmup data (effective and fast)
= General design applicable to a range of scenarios

e Techniques
o Last-K
= Monitors I/O below the server buffer cache
= Performance snapshot



Bonfire Architecture: Mo
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Bonfire Architecture: Bulk Cache Warmup
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Outline

e Introduction

e Trace analysis for cache warmup

e Cache warmup algorithm study with simulation
e Bonfire architecture
e Evaluation results

e Conclusion
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Evaluation Set Up

* Implemented Bonfire as a trace replayer
= Always-warm, on-demand, and Bonfire
= Metadata-only and metadata+data
= Replay traces using sync 1/Os

= Synthetic workloads

. On-demand
= MSR-Cambridge traces

Bonfire
Always-warm

e Metrics
o Benefits and overheads
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Benefit Results - Read Hit Rate of MSR Trace

» Higher read hit rate => less server 1/O load  on-demand converges
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* Results of a project server trace from MSR-Cambridge trace set
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Benefit Results - Read Latency of MSR Trace

* Lower read latency => better application-perceived performance
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Overhead Results
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Ove rh ead ReSU ItS Proper Bonfire scheme
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Summary of Results

 Faster cache warmup
= 59% to 100% improvement over on-demand

e Less storage server I/O load
o 38% to 200% more reduction than on-demand

» Better application-perceived latency
= Avg read latency 1/5 to 2/3 of on-demand

e Small controllable overhead
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Conclusion

On-demand warmup doesn’t work anymore

= Warm up terabytes of caches take days

Bonfire and beyond

= Client-side cache warmup
= Application-aware warmup

In need for more long big public traces |
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Thank You

Questions?
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