
SOCK: Rapid Task Provisioning

with Serverless-Optimized Containers

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter†,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin–Madison † Microsoft Gray Systems Lab

Abstract

Serverless computing promises to provide applications

with cost savings and extreme elasticity. Unfortunately,

slow application and container initialization can hurt

common-case latency on serverless platforms. In this

work, we analyze Linux container primitives, identify-

ing scalability bottlenecks related to storage and net-

work isolation. We also analyze Python applications

from GitHub and show that importing many popular li-

braries adds about 100 ms to startup. Based on these

findings, we implement SOCK, a container system opti-

mized for serverless workloads. Careful avoidance of ker-

nel scalability bottlenecks gives SOCK an 18× speedup

over Docker. A generalized-Zygote provisioning strategy

yields an additional 3× speedup. A more sophisticated

three-tier caching strategy based on Zygotes provides

a 45× speedup over SOCK without Zygotes. Relative

to AWS Lambda and OpenWhisk, OpenLambda with

SOCK reduces platform overheads by 2.8× and 5.3×

respectively in an image processing case study.

1. Introduction

The effort to maximize developer velocity has driven

many changes in the way programmers write and run

their code [43]. Programmers are writing code at a higher

level of abstraction: JavaScript, Python, Java, Ruby, and

PHP are now the most popular languages on GitHub

(in that order), surpassing lower-level languages such as

C and C++ [51]. Developers also increasingly focus on

application-specific logic, reusing existing libraries for

general functionality when possible [19, 23, 40].

New programming paradigms are also liberating de-

velopers from the distraction of managing servers [18,

52, 54]. In particular, a proliferation of new serverless

platforms [5, 6, 14, 17, 20, 39, 45] allow developers to

construct applications as a set of handlers, called lamb-

das, commonly written in Python (or some other high-

level language), that execute in response to events, such

as web requests or data generation. Serverless providers

automatically scale the number of handlers up and down

to accommodate load so that developers need not worry

about the number or configuration of machines serving

their workload. Using serverless platforms is often very

economical: billing granularity is in fractions of a second,

and there is generally no tenant charge for idle time.

These three strategies (i.e., programming at higher ab-

straction levels, reusing libraries, and decomposing ap-

plications into auto-scaling serverless lambdas) improve

developer velocity, but they also create new infrastructure

problems. Specifically, these techniques make process

cold-start more expensive and frequent. Languages such

as Python and JavaScript require heavy runtimes, making

startup over 10× slower than launching an equivalent C

program [1]. Reusing code introduces further startup la-

tency from library loading and initialization [4, 8, 26, 27].

Serverless computing amplifies these costs: if a mono-

lithic application is decomposed to N serverless lamb-

das, startup frequency is similarly amplified. Lambdas are

typically isolated from each other via containers, which

entail further sandboxing overheads [31].

Fast cold start is important for both tenants and

providers. A graceful reaction to flash crowds [15, 22] re-

quires concurrent low-latency deployment to many work-

ers. From a provider perspective, avoiding cold starts

can be quite costly. Most serverless platforms currently

wait minutes or hours to recycle idle, unbilled lambda in-

stances [50]. If cold start is made faster, providers will be

able to reclaim idle resources and rebalance load across

machines more aggressively.

In order to better understand the sandboxing and ap-

plication characteristics that interfere with efficient cold

start, we perform two detailed studies. First, we ana-

lyze the performance and scalability of various Linux

isolation primitives. Among other findings, we uncover

scalability bottlenecks in the network and mount names-

paces and identify lighter-weight alternatives. Second, we

study 876K Python projects from GitHub and analyz-

ing 101K unique packages from the PyPI repository. We

find that many popular packages take 100 ms to import,

and installing them can take seconds. Although the entire

1.5 TB package set is too large to keep in memory, we

find that 36% of imports are to just 0.02% of packages.

Based on these findings, we implement SOCK (roughly

for serverless-optimized containers), a special-purpose

container system with two goals: (1) low-latency invo-

cation for Python handlers that import libraries and (2)



efficient sandbox initialization so that individual workers

can achieve high steady-state throughput. We integrate

SOCK with the OpenLambda [20] serverless platform,

replacing Docker as the primary sandboxing mechanism.

SOCK is based on three novel techniques. First,

SOCK uses lightweight isolation primitives, avoiding the

performance bottlenecks identified in our Linux primi-

tive study, to achieve an 18× speedup over Docker. Sec-

ond, SOCK provisions Python handlers using a general-

ized Zygote-provisioning strategy to avoid the Python

initialization costs identified in our package study. In

the simplest scenarios, this technique provides an ad-

ditional 3× speedup by avoiding repeated initialization

of the Python runtime. Third, we leverage our general-

ized Zygote mechanism to build a three-tiered package-

aware caching system, achieving 45× speedups relative

to SOCK containers without Zygote initialization. In

an image-resizing case study, SOCK reduces cold-start

platform overheads by 2.8× and 5.3× relative to AWS

Lambda and OpenWhisk, respectively.

The rest of this paper is structured as follows. We

study the costs of Linux provisioning primitives (§2) and

application initialization (§3), and use these findings to

guide the design and implementation of SOCK (§4). We

then evaluate the performance of SOCK (§5), discuss

related work (§6), and conclude (§7).

2. Deconstructing Container Performance

Serverless platforms often isolate lambdas with contain-

ers [14, 20, 39, 45]. Thus, optimizing container initial-

ization is a key part of the lambda cold-start problem. In

Linux, containerization is not a single-cohesive abstrac-

tion. Rather, general-purpose tools such as Docker [36]

are commonly used to construct containers using a vari-

ety of Linux mechanisms to allocate storage, isolate re-

sources logically, and isolate performance. The flexibil-

ity Linux provides also creates an opportunity to design a

variety of special-purpose container systems. In this sec-

tion, we hope to inform the design of SOCK and other

special-purpose container systems by analyzing the per-

formance characteristics of the relevant Linux abstrac-

tions. In particular, we ask how can one maximize den-

sity of container file systems per machine? What is the

cost of isolating each major resource with namespaces,

and which resources must be isolated in a serverless envi-

ronment? And how can the cost of repeatedly initializing

cgroups to isolate performance be avoided? We perform

our analysis on an 8-core m510 machine [11] with the

4.13.0-37 Linux kernel.

2.1 Container Storage

Containers typically execute using a root file system other

than the host’s file system. This protects the host’s data

and provides a place for the container’s unique depen-

dencies to be installed. Provisioning a file system for a

container is a two step procedure: (1) populate a sub-

directory of the host’s file system with data and code

needed by the container, and (2) make the subdirectory

the root of the new container, such that code in the con-

tainer can no longer access other host data. We explore

alternative mechanisms for these population and access-

dropping steps.

Populating a directory by physical copying is pro-

hibitively slow, so all practical techniques rely on log-

ical copying. Docker typically uses union file systems

(e.g., AUFS) for this purpose; this provides a flexible

layered-composition mechanism and gives running con-

tainers copy-on-write access over underlying data. A sim-

pler alternative is bind mounting. Bind mounting makes

the same directory visible at multiple locations; there is

no copy-on-write capability, so data that must be pro-

tected should only be bind-mounted as read-only in a

container. To compare binds to layered file systems, we

repeatedly mount and unmount from many tasks in paral-

lel. Figure 1 shows the result: at scale, bind mounting is

about twice as fast as AUFS.

Once a subdirectory on the host file system has been

populated for use as a container root, the setup process

must switch roots and drop access to other host file data.

Linux provides two primitives for modifying the file-

system visible to a container. The older chroot operation

simply turns a subdirectory of the original root file system

into the new root file system. A newer mount-namespace

abstraction enables more interesting transformations: an

unshare call (with certain arguments) gives a container a

new set of mount points, originally identical to the host’s

set. The container’s mount points can then be modified

with mount, unmount, and other calls. It is even possible

to reorganize the mount namespace of a container such

that the container may see file system Y mounted on

file system X (the container’s root) while the host may

see X mounted on Y (the host’s root). There are cases

where this powerful abstraction can be quite helpful, but

overusing mount namespace flexibility “may quickly lead

to insanity,” as the Linux manpages warn [32].

We measure the scalability of mount namespaces, with

results shown in Figure 2. We have a variable number of

long-lived mount namespaces persisting throughout the

experiment (x-axis). We churn namespaces, concurrently

creating and deleting them (concurrency is shown by dif-

ferent lines). We observe that churn performance scales

poorly with the number of prior existing namespaces: as

the number of host mounts grows large, the rate at which

namespaces can be cloned approaches zero. We also eval-

uate chroot (not shown), and find that using it entails

negligible overhead (chroot latency is < 1µs).

2.2 Logical Isolation: Namespace Primitives

We have already described how mount namespaces can

be used to virtualize storage: multiple containers can have
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Figure 1. Storage Primitives. The performance of mount-

ing and unmounting AUFS file systems is compared to the per-

formance of doing the same with bind mounts.
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Figure 4. Network Namespace Performance. A given

number of containers (x-axis) are created and deleted in parallel

with multiple network namespace configurations.

access to their own virtual roots, backed by different

physical directories in the host. Linux’s network names-

paces similarly allow different containers to use the same

virtual port number (e.g., 80), backed by different physi-

cal ports on the host (e.g., 8080 and 8081). In this section,

we study the collective use of mount and network names-

paces, along with UTS, IPC, and PID namespaces [37]

(user and cgroup namespaces are not evaluated here). The

unshare call allows a process to create and switch to

a new set of namespaces. Arguments to unshare allow

careful selection of which resources need new names-

paces. Namespaces are automatically reaped when the

last process using them exits.

We exercise namespace creation and cleanup perfor-

mance by concurrently invoking unshare and exiting

from a variable number of tasks. We instrument the ker-

nel with ftrace to track where time is going. Figure 3

shows the latency of the four most expensive namespace

operations (other latencies not shown were relatively in-

significant). We observe that mount and IPC namespace

cleanup entails latencies in the tens of milliseconds. Upon

inspection of the kernel code, we found that both opera-

tions are waiting for an RCU grace period [35]. During

this time, no global locks are held and no compute is con-

sumed, so these latencies are relatively harmless to over-

all throughput; as observed earlier (§2.1), it is possible to

create ∼1500 mount namespaces per second, as long as

churn keeps the number of namespaces small over time.

Network namespaces are more problematic for both

creation and cleanup due to a single global lock that is

shared across network namespaces [13]. During creation,

Linux iterates over all existing namespaces while hold-

ing the lock, searching for namespaces that should be

notified of the configuration change; thus, costs increase

proportionally as more namespaces are created. As with

mount and IPC namespaces, network-namespace cleanup

requires waiting for an RCU grace period. However, for

network namespaces, a global lock is held during that pe-

riod, creating a bottleneck. Fortunately, network names-

paces are cleaned in batches, so the per-namespace cost

becomes small at scale (as indicated by the downward-

sloping “net cleanup” line).

Figure 4 shows the impact of network namespaces

on overall creation/deletion throughput (i.e., with all
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Figure 5. Cgroup Primitives. Cgroup performance is

shown for reuse and fresh-creation patterns.

five namespaces). With unmodified network namespaces,

throughput peaks at about 200 c/s (containers/second).

With minor optimizations (disabling IPv6 and eliminat-

ing the costly broadcast code), it is possible to churn over

400 c/s. However, eliminating network namespaces en-

tirely provides throughput of 900 c/s.

2.3 Performance Isolation: Cgroup Primitives

Linux provides performance isolation via the cgroup in-

terface [9]. Processes may be assigned to cgroups, which

are configured with limits on memory, CPU, file I/O, and

other resources. Linux cgroups are easier to configure dy-

namically than namespaces. The API makes it simple to

adjust the resource limits or reassign processes to differ-

ent cgroups. In contrast, a mechanism for reassigning a

process to a new PID namespace would need to overcome

obstacles such as potential PID collisions.

The flexibility of cgroups makes two usage patterns vi-

able. The first involves (1) creating a cgroup, (2) adding

a process, (3) exiting the process, and (4) removing the

cgroup; the second involves only Steps 2 and 3 (i.e., the

same cgroup is reused for different processes at differ-

ent times). Figure 5 compares the cost of these two ap-

proaches while varying the numbers of tasks concurrently

manipulating cgroups. Reusing is at least twice as fast as

creating new cgroups each time. The best reuse perfor-

mance is achieved with 16 threads (the number of CPU

hyperthreads), suggesting cgroups do not suffer from the

scaling issues we encountered with namespaces.

2.4 Serverless Implications

Our results have several implications for the design of

serverless containers. First, in a serverless environment,

all handlers run on one of a few base images, so the flex-

ible stacking of union file systems may not be worth the

the performance cost relative to bind mounts. Once a root

location is created, file-system tree transformations that

rely upon copying the mount namespace are costly at

scale. When flexible file-system tree construction is not

necessary, the cheaper chroot call may be used to drop

access. Second, network namespaces are a major scalabil-

ity bottleneck; while static port assignment may be useful

in a server-based environment, serverless platforms such

as AWS Lambda execute handlers behind a Network Ad-

dress Translator [16], making network namespacing of

little value. Third, reusing cgroups is twice as fast as cre-

ating new cgroups, suggesting that maintaining a pool of

initialized cgroups may reduce startup latency and im-

prove overall throughput.

3. Python Initialization Study

Even if lambdas are executed in lightweight sandboxes,

language runtimes and package dependencies can make

cold start slow [4, 8, 26, 27]. Many modern applications

are accustomed to low-latency requests. For example,

most Gmail remote-procedure calls are short, complet-

ing in under 100 ms (including Internet round trip) [20].

Of the short requests, the average latency is 27 ms, about

the time it takes to start a Python interpreter and print a

“hello world” message. Unless serverless platforms pro-

vide language- and library-specific cold-start optimiza-

tions, it will not be practical to decompose such applica-

tions into independently scaling lambdas. In this section,

we analyze the performance cost of using popular Python

libraries and evaluate the feasibility of optimizing initial-

ization with caching. We ask: what types of packages are

most popular in Python applications? What are the ini-

tialization costs associated with using these packages?

And how feasible is it to cache a large portion of main-

stream package repositories on local lambda workers?

3.1 Python Applications

We now consider the types of packages that future

lambda applications might be likely to use, assuming ef-

ficient platform support. We scrape 876K Python projects

from GitHub and extract likely dependencies on packages

in the popular Python Package Index (PyPI) repository,

resolving naming ambiguity in favor of more popular

packages. We expect that few of these applications cur-

rently run as lambdas; however, our goal is to identify

potential obstacles that may prevent them from being

ported to lambdas in the future.

Figure 6 shows the popularity of 20 packages that are

most common as GitHub project dependencies. Skew is

high: 36% of imports are to just 20 packages (0.02%

of the packages in PyPI). The 20 packages roughly fall

into five categories: web frameworks, analysis, commu-

nication, storage, and development. Many of these use

cases are likely applicable to future serverless applica-

tions. Current web frameworks will likely need to be re-

placed by serverless-oriented frameworks, but compute-

intense analysis is ideal for lambdas [21]. Many lamb-

das will need libraries for communicating with other ser-

vices and for storing data externally [16]. Development
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all GitHub-to-PyPI dependencies.
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Figure 9. File-System Modifications. The bars break-

down installations by the types of writes to the file system. The

egg and other files can be used without extraction.

libraries may be somewhat less relevant, but lambda-

based parallel unit testing is an interesting use case.

If a package is being used for the first time, it will

be necessary to download the package over the network

(possibly from a nearby mirror), install it to local stor-

age, and import the library to Python bytecode. Some of

these steps may be skipped upon subsequent execution,

depending on the platform. Figure 7 shows these costs for

each of the popular packages. Fully initializing a pack-

age takes 1 to 13 seconds. Every part of the initialization

is expensive on average: downloading takes 1.6 seconds,

installing takes 2.3 seconds, and importing takes 107 ms.

3.2 PyPI Repository

We now explore the feasibility of supporting full lan-

guage repositories locally on serverless worker machines.

We mirror and analyze the entire PyPI repository, which

contains 101K unique packages. Figure 8 shows the foot-

print of the entire repository, including every version of

every package, but excluding indexing files. The pack-

ages are about 1.5 TB total, or ∼0.5 TB compressed.

Most packages are compressed as .tar.gz files or a zip-

based format (.whl, .egg, or .zip). Across all format types,

the average package contains about 100 files (e.g., 135K

.whl packages hold 13M compressed files).

We wish to understand how many of the PyPI pack-

ages could coexist when installed together. PyPI pack-

ages that unpack to a single directory can easily coex-

ist with other installed packages, whereas packages that

modify shared files may break other packages. We at-

tempt to install every version of every PyPI package in

its own Docker Ubuntu container (using a 1-minute time-

out) and identify file creations and modifications. We ig-

nore changes to temporary locations. Figure 9 shows the

results for .tar.gz, .whl, and .zip distributions (.egg li-

braries are used directly without a prior installation, so

we skip those). While fewer than 1% timed out, 18% sim-

ply failed to install in our container. 66% of succeeding

installs only populate the local Python module directory

(the module dirs category). Another 31% of succeeding

installs modified just the module directories and the lo-

cal bin directory (Python modules are sometimes bundled



with various utilities). We conclude it is possible for 97%

of installable packages to coexist in a single local install.

3.3 Serverless Implications

Downloading and installing a package and its dependen-

cies from a local mirror takes seconds; furthermore, im-

port of installed packages takes over 100 ms. Fortunately,

our analysis indicates that storing large package reposito-

ries locally on disk is feasible. Strong popularity skew

further creates opportunities to pre-import a subset of

packages into interpreter memory [8].

4. SOCK with OpenLambda

In this section, we describe the design and implementa-

tion of SOCK, a container system optimized for use in

serverless platforms. We integrate SOCK with the Open-

Lambda serverless platform, replacing Docker containers

as the primary sandboxing mechanism for OpenLambda

workers and using additional SOCK containers to imple-

ment Python package caching. We design SOCK to han-

dle high-churn workloads at the worker level. The local

churn may arise due to global workload changes, rebal-

ancing, or aggressive reclamation of idle resources.

SOCK is based on two primary design goals. First,

we want low-latency invocation for Python handlers that

import libraries. Second, we want efficient sandbox ini-

tialization so that individual workers can achieve high

steady-state throughput. A system that hides latency by

maintaining pools of pre-initialized containers (e.g., the

LightVM approach [31]) would satisfy the first goal, but

not the second. A system that could create many contain-

ers in parallel as part of a large batch might satisfy the

second goal, but not the first. Satisfying both goals will

make a serverless platform suitable for many applications

and profitable for providers.

Our solution, SOCK, takes a three-pronged approach

to satisfying these goals, based on our analysis of Linux

containerization primitives (§2) and Python workloads

(§3). First, we build a lean container system for sandbox-

ing lambdas (§4.1). Second, we generalize Zygote provi-

sioning to scale to large sets of untrusted packages (§4.2).

Third, we design a three-layer caching system for reduc-

ing package install and import costs (§4.3).

4.1 Lean Containers

SOCK creates lean containers for lambdas by avoid-

ing the expensive operations that are only necessary for

general-purpose containers. Creating a container involves

constructing a root file system, creating communication

channels, and imposing isolation boundaries. Figure 10

illustrates SOCK’s approach to these three tasks.

Storage: Provisioning container storage involves first

populating a directory on the host to use as a container

root. Bind mounting is faster using union file systems

(§2.1), so SOCK uses bind mounts to stitch together a

root from four host directories, indicated by the “F” la-

bel in Figure 10. Every container has the same Ubuntu

base for its root file system (“base”); we can afford to

back this by a RAM disk as every handler is required to

use the same base. A packages directory used for pack-

age caching (“packages”) is mounted over the base, as de-

scribed later (§4.3). The same base and packages are read-

only shared in every container. SOCK also binds handler

code (“λ code”) as read-only and a writable scratch di-

rectory (“scratch”) in every container.

Once a directory has been populated as described, it

should become the root directory. Tools such as Docker

accomplish this by creating a new mount namespace, then

restructuring it. We use the faster and simpler chroot op-

eration (§2.1) since it is not necessary to selectively ex-

pose other host mounts within the container for server-

less applications. SOCK containers always start with two

processes (“init” and “helper” in Figure 10); both of these

use chroot during container initialization, and any chil-

dren launched from these processes inherit the same root.

Communication: The scratch-space mount of every

SOCK container contains a Unix domain socket (the

black pentagon in Figure 10) that is used for communi-

cation between the OpenLambda manager and processes

inside the container. Event and request payloads received

by OpenLambda are forwarded over this channel.

The channel is also used for a variety of control op-

erations (§4.2). Some of these operations require privi-

leged access to resources not normally accessible inside a

container. Fortunately, the relevant resources (i.e., names-

paces and container roots) may be represented as file de-

scriptors, which may be passed over Unix domain sock-

ets. The manager can thus pass specific capabilities over

the channel as necessary.

Isolation: Linux processes may be isolated with a

combination of cgroup (for performance isolation) and

namespace primitives (for logical isolation). It is rela-

tively expensive to create cgroups; thus, OpenLambda

creates a pool of cgroups (shown in Figure 10) that can

be used upon SOCK container creation; cgroups are re-

turned to the pool after container termination.

The “init” process is the first to run in a SOCK con-

tainer; init creates a set of new namespaces with a call to

unshare. The arguments to the call indicate that mount

and network namespaces should not be used, because

these were the two namespaces that scale poorly (§2.1

and §2.2). Mount namespaces are unnecessary because

SOCK uses chroot. Network namespaces are unneces-

sary because requests arrive over Unix domain socket, not

over a socket attached to a fixed port number, so port vir-

tualization is not required.

4.2 Generalized Zygotes

Zygote provisioning is a technique where new processes

are started as forks of an initial process, the Zygote,
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that has already pre-imported various libraries likely

to be needed by applications, thereby saving child pro-

cesses from repeatedly doing the same initialization work

and consuming excess memory with multiple identical

copies. Zygotes were first introduced on Android sys-

tems for Java applications [8]. We implement a more

general Zygote-provisioning strategy for SOCK. Specif-

ically, SOCK Zygotes differ as follows: (1) the set of

pre-imported packages is determined at runtime based

on usage, (2) SOCK scales to very large package sets by

maintaining multiple Zygotes with different pre-imported

packages, (3) provisioning is fully integrated with con-

tainers, and (4) processes are not vulnerable to malicious

packages they did not import.

As already described, SOCK containers start with

two processes, an init process (responsible for setting

up namespaces) and a helper process. The helper process

is a Python program that listens on the SOCK communi-

cation channel; it is capable of (a) pre-importing modules

and (b) loading lambda handlers to receive subsequent

forwarded events. These two capabilities are the basis for

a simple Zygote mechanism. A Zygote helper first pre-

imports a set of modules. Then, when a lambda is invoked

requiring those modules, the Zygote helper is forked to

quickly create a new handler helper, which then loads

the lambda code to handle a forwarded request.

We assume packages that may be pre-imported may be

malicious [48], and handlers certainly may be malicious,

so both Zygote helpers and handler helpers must run in

containers. The key challenge is using Linux APIs such

that the forked process lands in a new container, distinct

from the container housing the Zygote helper.

Figure 11 illustrates how the SOCK protocol provi-

sions a helper handler (“helper-H” in “Container H”)

from a helper Zygote (“helper-Z” in “Container Z”). (1)

The manager obtains references, represented as file de-

scriptors (fds), to the namespaces and the root file system

of the new container. (2) The fds are passed to helper-Z,

which (3) forks a child process, “tmp”. (4) The child then

changes roots to the new container with a combination

of fchdir(fd) and chroot(".") calls. The child also

calls setns (set namespace) for each namespace to relo-

cate to the new container. (5) One peculiarity of setns is

that after the call, the relocation has only partially been

applied to all namespaces for the caller. Thus, the child

calls fork again, creating a grandchild helper (“helper-H”

in the figure) that executes fully in the new container with

respect to namespaces. (6) The manager then moves the

grandchild to the new cgroup. (7) Finally, the helper lis-

tens on the channel for the next commands; the manager

will direct the helper to load the lambda code, and will

then forward a request to the lambda.

The above protocol describes how SOCK provisions a

handler container from a Zygote container. When Open-

Lambda starts, a single Zygote that imports no mod-

ules is always provisioned. In order to benefit from pre-

importing modules, SOCK can create additional Zygotes

that import various module subsets. Except for the first

Zygote, new Zygotes are provisioned from existing Zy-

gotes. The protocol for provisioning a new Zygote con-

tainer is identical to the protocol for provisioning a new

handler container, except for the final step 7. Instead of

loading handler code and processing requests, a new Zy-

gote pre-imports a specified list of modules, then waits to

be used for the provisioning of other containers.

Provisioning handlers from Zygotes and creating new

Zygotes from other Zygotes means that all the inter-

preters form a tree, with copy-on-write memory unbro-

ken by any call to exec. This sharing of physical pages

between processes reduces memory consumption [2]. Ini-

tialization of the Python runtime and packages will only

be done once, and subsequent initialization will be faster.

If a module loaded by a Zygote is malicious, it may in-

terfere with the provisioning protocol (e.g., by modifying

the helper protocol so that calls to setns are skipped).

Fortunately, the Zygote is sandboxed in a container, and
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will never be passed descriptors referring to unrelated

containers, so a malicious process cannot escape into ar-

bitrary containers or the host. SOCK protects innocent

lambdas by never initializing them from a Zygote that

has pre-imported modules not required by the lambda.

4.3 Serverless Caching

We use SOCK to build a three-tier caching system, shown

in Figure 12. First, a handler cache maintains idle handler

containers in a paused state; the same approach is taken

by AWS Lambda [49]. Paused containers cannot con-

sume CPU, and unpausing is faster than creating a new

container; however, paused containers consume memory,

so SOCK limits total consumption by evicting paused

containers from the handler cache on an LRU basis.

Second, an install cache contains a large, static set of

pre-installed packages on disk. Our measurements show

that 97% of installable PyPI packages could coexist in

such a installation. This installation is mapped read-only

into every container for safety. Some of the packages

may be malicious, but they do no harm unless a handler

chooses to import them.

Third, an import cache is used to manage Zygotes. We

have already described a general mechanism for creat-

ing many Zygote containers, with varying sets of pack-

ages pre-imported (§4.2). However, Zygotes consume

memory, and package popularity may shift over time,

so SOCK decides the set of Zygotes available based on

the import-cache policy. Import caching entails new de-

cisions for handling hits. In traditional caches, lookup

results in a simple hit or miss; in contrast, SOCK always

hits at least one cache entry and often must decide be-

tween alternative Zygotes. Eviction is also complicated

by copy-on-write sharing of memory pages between Zy-

gotes, which obfuscates the consumption of individuals.

We now describe SOCK’s selection and eviction policies.

Import-Cache Selection: Suppose (in the context of

Figure 13) that a handler is invoked that requires pack-

ages A and B. Entry 4 is a tempting choice to use as

the template for our new interpreter; it would provide the

best performance because all requisite packages are al-

ready imported. However, if package C is malicious, we

expose the handler to code that it did not voluntarily im-

port. We could potentially vet a subset of packages to be

deemed safe, but we should generally not use cache en-

tries that pre-import packages not requested by a handler.

This leaves cache Entries 2 and 3 as reasonable candi-

dates. The import cache decides between such alterna-

tives by choosing the entry with the most matching pack-

ages, breaking ties randomly. When SOCK must use an

entry X that is not an exact match, it first replicates X to

a new entry Y , imports the remaining packages in Y , and

finally replicates from Y to provision for the handler.

Import-Cache Eviction: The import cache measures

the cumulative memory utilization of all entries; when

utilization surpasses a limit, a background process begins

evicting entries. Deciding which interpreters to evict is

challenging because the shared memory between inter-

preters makes it difficult to account for the memory used

by a particular entry. The import cache relies on a simple

runtime model to estimate potential memory reclamation;

the model identifies the packages included by an inter-

preter that are not included by the parent entry. The model

uses the on-disk size of the packages as a heuristic for es-

timating memory cost. The import cache treats the sum

of these sizes as the benefit of eviction and the number

of uses over a recent time interval as the cost of eviction,

evicting the entry with highest benefit-to-cost ratio.

5. Evaluation

We now evaluate the performance of SOCK relative to

Docker-based OpenLambda and other platforms. We run

experiments on two m510 machines [11] with the 4.13.0-

37 Linux kernel: a package mirror and an OpenLambda

worker. The machines have 8-core 2.0 GHz Xeon D-1548

processors, 64 GB of RAM, and a 256 GB NVMe SSD.

We allocate 5 GB of memory for the handler cache and

25 GB for the import cache. We consider the following

questions: What speedups do SOCK containers provide

OpenLambda (§5.1)? Does built-in package support re-

duce cold-start latency for applications with dependen-

cies (§5.2)? How does SOCK scale with the number of

lambdas and packages (§5.3)? And how does SOCK com-

pare to other platforms for a real workload (§5.4)?

5.1 Container Optimizations

SOCK avoids many of the expensive operations nec-

essary to construct a general-purpose container (e.g.,

network namespaces, layered file systems, and fresh

cgroups). In order to evaluate the benefit of lean con-

tainerization, we concurrently invoke no-op lambdas on

OpenLambda, using either Docker or SOCK as the con-

tainer engine. We disable all SOCK caches and Zygote

preinitialization. Figure 14 shows the request throughput

and average latency as we vary the number of concur-

rent outstanding requests. SOCK is strictly faster on both

metrics, regardless of concurrency. For 10 concurrent re-



Throughput (ops/s)

L
a
te

n
c
y
 (

m
s
)

Docker (single logical core)

Docker

SOCK

1 concurrent 10 concurrent 20 concurrent

1 2 5 10 20 50 100 200
10

100

1000

10000

Figure 14. Docker vs. SOCK. Request throughput (x-

axis) and latency (y-axis) are shown for SOCK (without Zy-

gotes) and Docker for varying concurrency.

Concurrent Ops

O
p
s
/S

e
c
o
n
d SOCK + Zygote

SOCK

Docker

0 5 10 15 20
0

50

100

150

200

250

300

Figure 15. Interpreter Preinitialization. HTTP Request

Throughput is shown relative to number of concurrent requests.

Concurrent Ops

L
a
te

n
c
y
 (

m
s
)

SOCK

SOCK + Zygote

SOCK Freeze/Unfreeze

0 5 10 15 20
0

50

100

150

200

250

Figure 16. Container Reuse vs. Fast Creation. SOCK

container creation is compared to the freeze/unfreeze operation

that occurs when there are repeated calls to the same lambda.

Package

L
a
te

n
c
y
 (

s
)

SOCK: no cache

SOCK: import+install cache

2
0
m

s

2
0
m

s

2
1
m

s

2
0
m

s

2
0
m

s

3
.6

s

2
.1

s

1
.5

s

1
.1

s

0
.9

s

django flask requests simplejsondnspython
0

1

2

3

4

Figure 17. Pre-Imported Packages. SOCK latency with

and without package caches are shown.

quests, SOCK has a throughput of 76 requests/second

(18× faster than Docker) with an average latency of

130 milliseconds (19× faster). Some of the namespaces

used by Docker rely heavily on RCUs (§2.2), which scale

poorly with the number of cores [34]. Figure 14 also

shows Docker performance with only one logical core

enabled: relative to using all cores, this reduces latency

by 44% for concurrency = 1, but throughput no longer

scales with concurrency.

SOCK also improves performance by using Zygote-

style preinitialization. Even if a lambda uses no libraries,

provisioning a runtime by forking an existing Python

interpreter is faster than starting from scratch. Figure 15

compares SOCK throughput with and without Zygote

preinitialization. Using Zygotes provides SOCK with an

additional 3× throughput improvement at scale.

OpenLambda, like AWS Lambda [49], keeps recently

used handlers that are idle in a paused state in order

to avoid cold start should another request arrive. We

now compare the latency of SOCK cold start to the la-

tency of unpause, as shown in Figure 16. Although Zy-

gotes have reduced no-op cold-start latency to 32 ms

(concurrency = 10), unpausing takes only 3 ms. Al-

though SOCK cold-start optimizations enable more ag-

gressive resource reclamation, it is still beneficial to

pause idle handlers before immediately evicting them.

5.2 Package Optimizations

SOCK provides two package-oriented optimizations.

First, SOCK generalizes the Zygote approach so that

new containers can be allocated by one of many dif-

ferent Zygote containers, each with different packages

pre-imported, based on the current workload (import

caching). Second, a large subset of packages are pre-

installed to a partition that is bind-mounted read-only in

every container (install caching).

We first evaluate these optimizations together with a

simple workload, where a single task sequentially in-

vokes different lambdas that use the same single library,

but perform no work. Figure 17 shows the result. With-

out optimizations, downloading, installing, and importing

usually takes at least a second. The optimizations reduce

latency to 20 ms, at least a 45× improvement.

To better understand the contributions of the three

caching layers (i.e., the new import and install caches and

the old handler cache), we repeat the experiment in Fig-

ure 17 for django, evaluating all caches, no caches, and
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each cache in isolation. For each experiment, 100 differ-

ent lambdas import django, and a single task sequentially

invokes randomly-chosen lambdas. Figure 18 shows the

results. The handler cache has bimodal latency: it usually

misses, but is fastest upon a hit. The working set fits in the

import cache, which provides consistent latencies around

20 ms; the install cache is also consistent, but slower. Us-

ing all caches together provides better performance than

any one individually.

When import caching is enabled, processes in the han-

dler cache and processes in the import cache are part of

the same process tree. This structure leads to deduplica-

tion: multiple processes in the handler cache can share

the same memory page on a copy-on-write basis with a

parent process in the import cache. This allows the han-

dler cache to maintain more cache entries. Figure 19 il-

lustrates this helpful interaction. We issue 200 requests

to many different lambdas, all of which import django,

without an import cache (experiment 1) and with an im-

port cache (experiment 2). In the first experiment, the

handler cache has 18% hits. In the second, deduplica-

tion allows the handler cache to maintain more entries,

achieving 56% hits.

5.3 Scalability

We stress test SOCK with a large set of artificial packages

(100K). The packages generate CPU load and memory

load, similar to measured overheads of 20 popular pack-

ages (§3.1). We create dependencies between packages

similar to the PyPI dependency structure. Each handler

imports 1-3 packages directly. The packages used are de-

cided randomly based on package popularity; popularity

is randomly assigned with a Zipfian distribution, s = 2.5.

All packages are pre-installed to the install cache.

We also vary the number of handlers (100 to 10K).

A small working set exercises the handler cache, and a

large working set exercises the install cache. The import

cache should service mid-sized working sets. Handlers

are executed uniformly at random as fast as possible

by 10 concurrent tasks. Figure 20 shows a latency CDF

for each working set size. With 100 handlers, SOCK

achieves low latency (39 ms median). For 10K handlers,

88% percent of requests must be serviced from the install

cache, so the median latency is 502 ms. For 500 handlers,

the import cache absorbs 46% of the load, and the handler

cache absorbs 6.4%, resulting in 345 ms latencies.



5.4 Case Study: Image Resizing

In order to evaluate a real serverless application, we im-

plement on-demand image resizing [28]. A lambda reads

an image from AWS S3, uses the Pillow package to re-

size it [10], and writes the output back to AWS S3. For

this experiment, we compare SOCK to AWS Lambda and

OpenWhisk, using 1 GB lambdas (for AWS Lambda) and

a pair of m4.xlarge AWS EC2 instances (for SOCK and

OpenWhisk); one instance services requests and the other

hosts handler code. We use AWS’s US East region for

EC2, Lambda, and S3.

For SOCK, we preinstall Pillow and the AWS SDK [44]

(for S3 access) to the install cache and specify these

as handler dependencies. For AWS Lambda and Open-

Whisk, we bundle these dependencies with the handler

itself, inflating the handler size from 4 KB to 8.3 MB.

For each platform, we exercise cold-start performance by

measuring request latency after re-uploading our code as

a new handler. We instrument handler code to separate

compute and S3 latencies from platform latency.

The first three bars of Figure 21 show compute and

platform results for each platform (average of 50 runs).

“SOCK cold” has a platform latency of 365 ms, 2.8×

faster than AWS Lambda and 5.3× faster than Open-

Whisk. “SOCK cold” compute time is also shorter than

the other compute times because all package initialization

happens after the handler starts running for the other plat-

forms, but SOCK performs package initialization work as

part of the platform. The “SOCK cold+” represents a sce-

nario similar to “SOCK cold” where the handler is being

run for the first time, but a different handler that also uses

the Pillow package has recently run. This scenario further

reduces SOCK platform latency by 3× to 120 ms.

6. Related Work

Since the introduction of AWS Lambda in 2014 [5], many

new serverless platforms have become available [6, 14,

17, 39, 45]. We build SOCK over OpenLambda [20].

SOCK implements and extends our earlier Pipsqueak

proposal for efficient package initialization [38].

In this work, we benchmark various task-provisioning

primitives and measure package initialization costs. Prior

studies have ported various applications to the lambda

model in order to evaluate platform performance [21,

33]. Spillner et al. [46] ported Java applications to AWS

Lambda to compare performance against other platforms,

and Fouladi et al. [16] built a video encoding platform

over lambdas. Wang et al. [50] reverse engineer many

design decisions made by major serverless platforms.

There has been a recent revival of interest in sand-

boxing technologies. Linux containers, made popular

through Docker [36], represent the most mainstream

technology; as we show herein, the state of the art is

not yet tuned to support lambda workloads. OpenWhisk,

which uses Docker containers, hides latency by maintain-

ing pools of ready containers [47]. Recent alternatives to

traditional containerization are based on library operating

systems, enclaves, and unikernels [7, 24, 29, 31, 41, 42].

The SOCK import cache is a generalization of the Zy-

gote approach first used by Android [8] for Java pro-

cesses. Akkus et al. [1] also leverage this technique to

efficiently launch multiple lambdas in the same container

when the lambdas belong to the same application. Zy-

gotes have also been used for browser processes (some-

times in conjunction with namespaces [12]). We believe

SOCK’s generalized Zygote strategy should be generally

applicable to other language runtimes that dynamically

load libraries or have other initialization costs such as

JIT-compilation (e.g., the v8 engine for Node.js [25] or

the CLR runtime for C# [3, 30]); however, it is not obvi-

ous how SOCK techniques could be applied to statically-

linked applications (e.g., most Go programs [53]).

Process caching often has security implications. For

example, HotTub [27] reuses Java interpreters, but not

between different Linux users. Although the Zygote

approach allows cache sharing between users, Lee et

al. [26] observed that forking many child processes

from the same parent without calling exec undermines

address-space randomization; their solution was Morula,

a system that runs exec every time, but maintains a pool

of preinitialized interpreters; this approach trades overall

system throughput for randomization.

7. Conclusion

Serverless platforms promise cost savings and extreme

elasticity to developers. Unfortunately, these platforms

also make initialization slower and more frequent, so

many applications and microservices may experience

slowdowns if ported to the lambda model. In this work,

we identify container initialization and package depen-

dencies as common causes of slow lambda startup. Based

on our analysis, we build SOCK, a streamlined container

system optimized for serverless workloads that avoids

major kernel bottlenecks. We further generalize Zygote

provisioning and build a package-aware caching system.

Our hope is that this work, alongside other efforts to min-

imize startup costs, will make serverless deployment vi-

able for an ever-growing class of applications.
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