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Abstract
We present a new form of storage virtualization based on
block-level address remapping. By allowing the host sys-
tem to manipulate this address map with a set of three
simple operations (clone, move, and delete), we enable
a variety of useful features and optimizations to be read-
ily implemented, including snapshots, deduplication, and
single-write journaling. We present a prototype imple-
mentation called Project ANViL and demonstrate its util-
ity with a set of case studies.

1 Introduction
Virtualization has been widely employed as a technique
for managing and exploiting the available resources in
computing systems, from memory and processors to en-
tire machines [1,2,4,5,9,22]. Virtual memory in particular
has enabled numerous features and optimizations, includ-
ing themmap(2) interface to file I/O, shared libraries,
efficientfork(2), zero-copy I/O, and page sharing be-
tween virtual machines [3,29].

Storage virtualization, however, while conceptually
similar to memory virtualization, has typically been of
limited use to applications, focusing instead on storage
management by introducing abstraction between physical
storage layout and the logical device as presented to a host
or application using it [10,13,28]. Features and function-
ality enabled by storage virtualization, such as dedupli-
cation, replication, and thin-provisioning, remain hidden
behind the block device interface. While highly useful,
the features of existing storage virtualization systems are
primarily limited to administrative functionality, such as
defining and provisioning LUNs, offering nothing to ac-
tual applications beyond standard read and write opera-
tions. As others have shown, these limitations in stor-
age virtualization result in sub-optimal application per-
formance and duplication of functionality across different
layers in the storage stack [8,11,18,21].

Some of the limits of storage virtualization have been
addressed in recent research on Flash Translation Layers
(FTLs), with new machinery proposed to support Atomic
Writes, Persistent TRIM, and Sparseness [17, 18, 20, 21,

24]. These extensions enable applications to better lever-
age the power of virtualization already built into the FTL
and also extensions enable the removal of redundant func-
tionality across system layers, resulting in better flash en-
durance and application-level performance [16,21].

We propose a simple yet powerful set of primitives
based onfine-grained address remappingat both the block
and extent level. As we will show, fine-grained address
remapping provides the flexibility needed to benefit ap-
plications while still retaining the generality necessaryto
provide the functionality offered by existing virtualized
volume managers. By allowing the host to manipulate the
block-level logical-to-physical address map withclone,
move, anddeleteoperations, we enable storage virtual-
ization to more closely resemble virtualized memory in
its fine-grained flexibility and broad utility, though in a
manner adapted to the needs of persistent storage.

We illustrate the utility of our approach by developing
the Advanced Nonvolatile-memory Virtualization Layer
(ANViL), a prototype implementation of fine-grained ad-
dress remapping as a stacking block device driver, to effi-
ciently implement both file and volume snapshots, dedu-
plication, and single-write journaling. More specifically,
we demonstrate how ANViL can provide high perfor-
mance volume snapshots, offering as much as a 7× per-
formance improvement over an existing copy-on-write
implementation of this feature. We show how ANViL can
be used to allow common, conventional file systems to
easily add support for file-level snapshots without requir-
ing any radical redesign. We also demonstrate how it can
be leveraged to provide a performance boost of up to 50%
for transactional commits in a journaling file system.

The remainder of this paper is organized as follows: we
begin by describing how ANViL fits in naturally in the
context of modern flash devices (§2) and detailing the ex-
tended device interface we propose (§3). We then discuss
the implementation of ANViL (§4), describe a set of case
studies illustrating a variety of useful real-world applica-
tions (§5), and conclude (§6).



2 Background

Existing storage virtualization systems focus their feature
sets primarily on functionality “behind” the block inter-
face, offering features like replication, thin-provisioning,
and volume snapshots geared toward simplified and im-
proved storage administration [10, 28]. They offer little,
however, in the way of added functionality to thecon-
sumersof the block interface: the file systems, databases,
and other applications that actually access data from the
virtualized storage. Existing storage technologies, partic-
ularly those found in increasingly-popular flash devices,
offer much of the infrastructure necessary to provide more
advanced storage virtualization that could provide a richer
interface directly beneficial to applications.

At its innermost physical level, flash storage does not
offer the simple read/write interface of conventional hard
disk drives (HDDs), around which existing storage soft-
ware has been designed. While reads can be performed
simply, a write (orprogram) operation must be preceded
by a relatively slow and energy-intensiveeraseopera-
tion on a larger erase block (often hundreds of kilobytes
or larger), before which any live data in the erase block
must be copied elsewhere. Flash storage devices typi-
cally employ aflash translation layer(FTL) to simplify
integration of this more complex interface into existing
systems by adapting the native flash interface to the sim-
pler HDD-style read/write interface, hiding the complex-
ity of program/erase cycles from other system compo-
nents and making the flash device appear essentially as
a faster HDD. In order to achieve this, FTLs typically em-
ploy log-style writing, in which data is never overwritten
in-place, but instead appended to the head of a log [23].
The FTL then maintains an internal address-remapping ta-
ble to track which locations in the physical log correspond
to which addresses in the logical block address space pro-
vided to higher layers of the storage stack [12,26].

Such an address map provides most of the machinery
that would be necessary to provide more sophisticated
storage virtualization, but its existence is not exposed to
the host system, preventing its capabilities from being
fully exploited. A variety of primitives have been pro-
posed to better expose the internal power of flash transla-
tion layers and similar log and remapping style systems,
including atomic writes, sparseness (thin provisioning),
Persistent TRIM, and cache-friendly garbage collection
models [18, 20, 21, 24, 30]. These have been shown to
have value for a range of applications from file systems
to databases, key-value stores, and caches.

3 Interfaces
Address-remapping structures exist in FTLs and storage
engines that provide thin provisioning and other storage
virtualization functions today. We propose an extended
block interface that enables a new form of storage virtu-
alization by introducing three operations to allow the host
system to directly manipulate such an address map.

3.1 Operations
Range Clone: clone(src, len, dst): The range
clone operation instantiates new mappings in a given
range of logical address space (thedestinationrange) that
point to the same physical addresses mapped at the corre-
sponding logical addresses in another range (thesource
range); upon completion the two ranges share storage
space. A read of an address in one range will return the
same data as would be returned by a read of the corre-
sponding address in the other range. This operation can be
used to quickly relocate data from one location to another
without incurring the time, space, and I/O bandwidth costs
of a simplistic read-and-rewrite copy operation.

Range Move: move(src, len, dst): The range
move operation is similar to a range clone, but leaves the
source logical address range unmapped. This operation
has the effect of efficiently transferring data from one lo-
cation to another, again avoiding the overheads of reading
in data and writing it back out to a new location.

Range Delete: delete(src, len): The range
delete operation simply unmaps a range of the logical ad-
dress space, effectively deleting whatever data had been
present there. This operation is similar to theTRIM or
DISCARD operation offered by existing SSDs. However,
unlike TRIM or DISCARD, which are merely advisory,
the stricter range delete operation guarantees that upon
acknowledgment of completion the specified logical ad-
dress range is persistently unmapped. Range deletion is
conceptually similar to the Persistent TRIM operation de-
fined in prior work [15, 20]. Our work extends previous
concepts by combining this primitive with the above clone
and move operations for additional utility.

Under this model, a given logical address can be either
mapped or unmapped. A read of a mapped address returns
the data stored at the corresponding physical address. A
read of an unmapped address simply returns a block of
zeros. A write to a logical address, whether mapped or
unmapped, allocates a new location in physical storage
for the updated logical address. If the logical address pre-
viously shared physical space with one or more additional
logical addresses, that mapping will be decoupled, with
the affected logical address now pointing to a new physi-
cal location while the other logical addresses retain their
original mapping.
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3.2 Complementary Properties
While giving the host system the ability to manipulate the
storage address map is of course the primary aim of our
proposed interface, other properties complement our in-
terfaces nicely and make them more useful in practice for
real-world storage systems.

Sparseness or Thin Provisioning: In conventional
storage devices, the logical space exposed to the host
system is mapped one-to-one to the (advertised) physi-
cal capacity of the device. However, the existence of the
range clone operation implies that the address map must
be many-to-one. Thus, in order to retain the ability to
utilize the available storage capacity, the logical address
space must be expanded – in other words, the device must
be thin-provisionedor sparse. The size of the logical ad-
dress space, now decoupled from the physical capacity of
the device, determines the upper limit on the total number
of cloned mappings that may exist for a given block.

Durability: The effects of a range operation must be
crash-safe in the same manner that an ordinary data write
is: once acknowledged as complete, the alteration to the
address map must persist across a crash or power loss.
This requirement implies that the metadata modification
must be synchronously persisted, and thus that each range
operation implies a write to the underlying physical stor-
age media.

Atomicity: Because it provides significant added util-
ity for applications in implementing semantics such as
transactional updates, we propose that a vector of range
operations may be submitted as a single atomic batch,
guaranteeing that after a crash or power loss, the effects
of eitherall or noneof the requested operations will re-
main persistent upon recovery. Log-structuring (see §4.1)
makes this relatively simple to implement.

4 Implementation
In this section we describe the implementation of our pro-
totype, the Advanced Nonvolatile-memory Virtualization
Layer (ANViL), a Linux kernel module that acts as a
generic stacking block device driver. ANViL runs on top
of single storage devices as well as RAID arrays of mul-
tiple devices and is equally at home on either. It is not a
full FTL, but it bears a strong resemblance to one. Though
an implementation within the context of an existing FTL
would have been a possibility, we chose instead to build
ANViL as a separate layer to simplify development.

4.1 Log Structuring
In order to support the operations described earlier (§3),
ANViL is implemented as a log-structured block device.
Every range operation is represented by a note written
to the log specifying the point in the logical ordering

of updates at which it was performed. The note also
records the alterations to the logical address map that were
performed; this simplifies reconstruction of the device’s
metadata after a crash. Each incoming write is redirected
to a new physical location, so updates to a given logical
range do not affect other logical ranges which might share
physical data. Space on the backing device is managed
in large segments (128MB by default); each segment is
written sequentially and a log is maintained that links the
segments together in temporal order.

4.2 Metadata Persistence
Whenever ANViL receives a write request, before ac-
knowledging completion it must store in non-volatile me-
dia not only the data requested to be written, but also any
updates to its own internal metadata necessary to guaran-
tee that it will be able to read the block back even after a
crash or power loss. The additional metadata is small (24
bytes per write request, independent of size), but due to
being a stacked layer of the block IO path, writing an addi-
tional 24 bytes would require it to write out another entire
block. Done naı̈vely, the extra blocks would incur an im-
mediate 100% write amplification for a workload consist-
ing of single-block writes, harming both performance and
flash device lifespan. However, for a workload with mul-
tiple outstanding write requests (a write IO queue depth
greater than one), metadata updates for multiple requests
can be batched together into a single block write, amor-
tizing the metadata update cost across multiple writes.

ANViL thus uses an adaptive write batching algorithm,
which, upon receiving a write request, waits for a small
period of time to see if further write requests arrive, in-
creasing the effectiveness of this metadata batching opti-
mization, while balancing the time spent waiting for an-
other write with impact on the latency of the current write.

4.3 Space Management
Space on the backing device is allocated at block granular-
ity for incoming write requests. When a write overwrites a
logical address that was already written and thus mapped
to an existing backing-device address, the new write is al-
located a new address on the backing device and the old
mapping for the logical address is deleted and replaced
by a mapping to the new backing device address. When
no mappings to a given block of the backing device re-
main, that block becomes “dead” and its space may be
reclaimed. However, in order to maintain large regions of
space in the backing device so as to allow for sequential
writing, freeing individual blocks as they become invalid
is not a good approach for ANViL. Instead, the minimum
unit of space reclamation is one segment.

A background garbage collector continuously searches
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for segments of backing device space that are under-
utilized (i.e. have a large number of invalid blocks). When
such a segment is found, its remaining live blocks are
copied into a new segment (appended at the current head
of the log as with a normal write), any logical addresses
mapped to them are updated to point to the new location
they have been written out to, and finally the entire seg-
ment is returned to the space allocator for reuse.

5 Case Studies
Here we demonstrate the generality and utility of our
range operations by implementing, with relatively lit-
tle effort, a number of features useful to other compo-
nents across a broad range of the storage stack, includ-
ing volume managers (enabling simple and efficient vol-
ume snapshots), file systems (easily-integrated file snap-
shots), and transactional storage systems such as rela-
tional databases (allowing transactional updates without
the double-write penalty). All experiments were per-
formed on an HP DL380p Gen8 server with two six-core
(12-thread) 2.5GHz Intel Xeon processors and a 785GB
Fusion-io ioDrive2, running Linux 3.4.

5.1 Snapshots
Snapshots are an important feature of modern storage sys-
tems and have been implemented at different layers of
the storage stack from file systems to block devices [25].
ANViL easily supports snapshots at multiple layers; here
we demonstrate file- and volume-level snapshots.

5.1.1 File Snapshots
File-level snapshots enable applications to checkpoint the
state of individual files at arbitrary points in time, but are
only supported by a few recent file systems [7]. Many
widely-used file systems, such as ext4 [19] and XFS [27],
do not offer file-level snapshots, due to the significant de-
sign and implementation complexity required.

ANViL enables file systems to support file-level snap-
shots with minimal implementation effort and no changes
to their internal data structures. Snapshotting individual
files is simplified with range clones, as the file system has
only to allocate logical address space and issue a range
operation to clone the address mappings from the existing
file into the newly-allocated address space [14].

With just a few hundred lines of code, we have added
an ioctl to ext4 to allow a zero-copy implementation
of the standardcp command, providing an efficient (in
both space and time) file-snapshot operation. Figure 1
shows, for varying file sizes, the time taken to copy a
file using the standardcp command on an ext4 file sys-
tem mounted on an ANViL device in comparison to the
time taken to copy the file using our special range-clone
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Figure 1: Time to copy files of various sizes via standard
cp with both a cold and a warm page cache, and using a
special ANViLioctl in our modified version of ext4.

ioctl. Unsurprisingly, the range-clone based file copy
is dramatically faster than the conventional read-and-write
approach used by the unmodifiedcp, copying larger files
in orders of magnitude less time. Also, unlike standard
cp, the clone based implementation shares physical space
between copies, making it vastly more storage efficient as
normal for thinly provisioned snapshots.

5.1.2 Volume Snapshots
Volume snapshots are similar to file snapshots, but even
simpler to implement. We merely identify the range of
blocks that represent a volume and clone it into a new
range of logical address space, which a volume manager
can then provide access to as an independent volume.

Volume snapshots via range-clones offer much better
performance than the snapshot facilities offered by some
existing systems, such as Linux’s built-in volume man-
ager, LVM. LVM snapshots are (somewhat notoriously)
slow, because they operate via copy-on-write of large ex-
tents of data (2MB by default) for each extent that is writ-
ten to in the volume of which the snapshot was taken.
To quantify this, we measure the performance of random
writes at varying queue depths on an LVM volume and on
ANViL, both with and without a recently-activated snap-
shot. In Figure 2, we see that while the LVM volume suf-
fers a dramatic performance hit when a snapshot is active,
ANViL sees little change in performance, since it instead
uses its innate redirect-on-write mechanism.

5.2 Deduplication
Data deduplication is often employed to eliminate data re-
dundancy and better utilize storage capacity by identify-
ing pieces of identical data and collapsing them together
to share the same physical space. Deduplication can of
course be implemented easily using a range clone opera-
tion. As with snapshots, deduplication can be performed
at different layers of the storage stack. Here we show how
block-level deduplication can be easily supported by a file
system running on top of an ANViL device.
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Figure 2: Random write IOPS on ANViL and LVM, both
in isolation and with a recently-activated snapshot. The
baseline bars illustrate ANViL’s raw I/O performance. Its
relatively low performance at small queue depths is due to
the overhead incurred by its metadata updates.

Extending the sameioctl used to implement file
snapshots (§5.1.1), we added an optional flag to specify
that the file system should, as a single atomic operation,
read the two indicated file ranges and then conditionally
perform a range clone if and only if they contain iden-
tical data. This operation provides a base primitive that
can be used as the underlying mechanism for a userspace
deduplication tool, with the atomicity necessary to allow
it to operate safely in the presence of possible concurrent
file modifications. Without this locking it would risk los-
ing data written to files in a time-of-check-to-time-of-use
race between the deduplicator detecting that two block
ranges are identical (the check) and performing the range-
copy operation (the use). While the simplistic proof-of-
concept deduplication system we have is unable to detect
previously-deduplicated blocks and avoid re-processing
them, the underlying mechanism could be employed by a
more sophisticated offline deduplicator without this draw-
back (or even, with appropriate plumbing, an online one).

5.3 Single-Write Journaling
Journaling is widely used to provide atomicity to multi-
block updates and thus ensure metadata (and sometimes
data) consistency in systems such as databases and file
systems. Such techniques are required because storage
devices typically do not provide any atomicity guarantees
beyond a single block write. Unfortunately, journaling
causes each journaled update to be performed twice: once
to the journal region and then to the final location of the
data. In case of failure, updates that have been commit-
ted to the journal are replayed at recovery time, and un-
committed updates are discarded. ANViL, however, can
leverage its redirect-on-write nature and internal metadata
management to support a multi-block atomic write oper-
ation. With this capability, we can avoid the double-write
penalty of journaling and thus improve both performance
and the lifespan of the flash device.

By making a relatively small modification to a journal-
ing file system, we can use a vectored atomic range move
operation to achieve this optimization. When the file sys-
tem would write the commit block for a journal transac-
tion, it instead issues a single vector of range moves to
atomically relocate all metadata (and/or data) blocks in
the journal transaction to their “home” locations in the
main file system. Figure 3 illustrates an atomic com-
mit operation via range moves. This approach is similar
to Choi et al.’s JFTL [6], though unlike JFTL the much
more general framework provided by ANViL is not tai-
lored specifically to journaling file systems.

Using range moves in this way obviates the need for a
second write to copy each block to its primary location,
since the range move has already put them there, elimi-
nating the double-write penalty inherent to conventional
journaling. This technique is equally applicable to meta-
data journaling and full data journaling; with the latter this
means that a file system can achieve the stronger consis-
tency properties offered by data journaling without pay-
ing the penalty of the doubling of write traffic incurred by
journaling without range moves. By halving the amount
of data written, flash device lifespan is also increased.

Commit-via-range-move also obviates the need for any
journal recovery at mount time, since any transaction that
has committed will need no further processing or IO,
and any transaction in the journal that has not completed
should not be replayed anyway (for consistency reasons).
This simplification would allow the elimination of over
700 lines of (relatively intricate) recovery code from the
jbd2 codebase.

In effect, this approach to atomicity simply exposes to
the application (the file system, in this case) the internal
operations necessary to stitch together a vectored atomic
write operation from more primitive operations: the appli-
cation writes its buffers to a region of scratch space (the
journal), and then, once all of the writes have completed,
issues a single vectored atomic range move to put each
block in its desired location.

We have implemented single-write journaling in ext4’s
jbd2 journaling layer; it took approximately 100 lines of
new code and allowed the removal of over 900 lines of
existing commit and recovery code. Figure 4 shows the
performance results for write throughput in data journal-
ing mode of a process writing to a file in varying chunk
sizes and callingfdatasync after each write. In all
cases ext4a (our modified, ANViL-optimized version of
ext4) achieves substantially higher throughput than the
baseline ext4 file system. At small write sizes the rela-
tive gain of ext4a is larger, because in addition to elim-
inating the double-write of file data, the recovery-less
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nature of single-write journaling also obviates the need
for writing the start and commit blocks of each jour-
nal transaction; for small transactions the savings from
this are proportionally larger. At larger write sizes, the
reason that the performance gain is less than the dou-
bling that might be expected (due to halving the amount
of data written) is that despite consisting purely of syn-
chronous file writes, the workload is actually insuffi-
ciently IO-bound. The raw performance of the storage
device is high enough that CPU activity in the file system
consumes approximately 50% of the workload’s execu-
tion time; jbd2’skjournald thread (which performs all
journal writes) is incapable of keeping the device utilized,
and its single-threadedness means that adding additional
userspace IO threads to the workload does little to in-
crease device IO bandwidth utilization. Adding a second
thread to the 512KB write workload increases throughput
from 132 MB/s to 140 MB/s; four threads actuallyde-
creasesthroughput to 128 MB/s.

The mechanism underlying single-write journaling
could be more generally applied to most forms of write-
ahead logging, such as that employed by relational
database management systems [21].

6 Conclusions

The above case studies show that with a simple but power-
ful remapping mechanism, a single log structured storage
layer can provide upstream software with both high per-
formance and a flexible storage substrate.

Virtualization is an integral part of modern systems, and
with the advent of flash it has become important to con-
sider storage virtualization beyond volume management
in order to uncover the true potential of the technology.
In this paper we have proposed advanced storage virtual-
ization with a set of interfaces giving applications fine-
grained control over storage address remapping. Their
implementation is a natural extension of common mech-
anisms present in log-structured datastores such as FTLs,
and we demonstrated, with a set of practical case studies
with our ANViL prototype, the utility and generality of
this interface. Our work to date shows that the proposed
interfaces have enough flexibility to provide a great deal
of added utility to applications while remaining relatively
simple to integrate.
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