
Mass Spectrum Labeling: Theory and Practice

Z. Huang, L. Chen, J-Y. Cai, D. Gross*, D. Musicant*, R. Ramakrishnan, J. Schauer*, S.J. Wright

Abstract
We introduce the problem of labeling a particle’s mass spectrum
with the substances it contains, and develop several formal
representations of the problem, taking into account practical
complications such as unknown compounds and noise. This task
is currently a bottle-neck in analyzing data from a new
generation of instruments for real-time environmental monitoring.

1. Introduction
Mass spectrometry is widely used for the identification and

quantification of elements, chemicals and biological materials.
Historically, the specificity of mass spectrometry has been aided
by upstream separation to remove mass spectral interference
between different species. However, in the past decade, a wide
range of real-time mass spectrometry instruments have been
employed, and the nature of these instruments often precludes
separation and clean-up steps. The mass spectrum produced for a
particle in real-time by one of these instruments, e.g., the Aerosol
Time-of-Flight Mass Spectrometer (ATOFMS) [12,9,14,16], is
therefore comprised of overlaid mass spectra from several
substances, and the overlap between these spectra makes it
difficult to identify the underlying substances. The commercially
available ATOFMS instrument can obtain mass spectra for up to
about 250 particles per minute, producing a time-series with
unusual complexity. The data analysis challenges we describe are
equally applicable to other real-time instruments that utilize mass
spectrometry, such as the Aerosol Mass Spectrometer (AMS).

Unlabeled Spectrum: Labeled Spectrum:

Na+

Al+

Fe+
Ca+

FeO+
K2Cl+

Fe2O+

Ba+ BaO+

BaFeO+

BaFeO2
+

BaFe+
BaCl+

0 100 300200
m/z

Na+

Al+

Fe+
Ca+

FeO+
K2Cl+

Fe2O+

Ba+ BaO+

BaFeO+

BaFeO2
+

BaFe+
BaCl+

0 100 300200
m/z

0 100 3002000 100 300200
m/z

Figure 1: Mass spectrum labeling
Mass spectrum labeling consists of “translating” the raw plot

of intensity versus mass-to-charge (m/z) value to a list of
chemical substances or ions and their rough quantities (the
quantities omitted in Figure 1) present in the particle. Labeling
spectra allows us to think of a stream of mass spectra as a time-
series of observations, one per collected particle, where each
observation is a set of ion-quantity pairs. This is similar to a time-
series of transactions, each recording the items purchased by a
customer in a single visit to a store [1,4,13]. This analogy makes
a wide range of association rule [3] and sequential pattern
algorithms [2] applicable to the analysis of labeled mass
spectrometry data.

The contributions of this paper include the following: In this
and a companion paper [7], we introduce an important class of
data mining problems involving mass spectra. The focus in this
paper is on the labeling of individual spectra (Section 2), which is
the foundation of a class of group-oriented labeling tasks
discussed in [7]. We introduce a rigorous framework for labeling
and present a theoretical characterization of ambiguity, which
arises due to overlapped spectra (Section 3). We account for
practical complexities such as noise, errors, and the presence of
unknown substances (Section 4), and present algorithms together
with several optimizations and theoretical results (Section 5). We
then present a detailed synthetic data generator that is based on
real mass spectra, conforms to realistic problem scenarios, and
allows us to produce labeled spectra while controlling several
fundamental parameters such as ambiguity and noise (Section 6).
Finally, we introduce a metric for measuring the quality of
labeling, and evaluate our labeling algorithms, showing that
although slower than some machine learning approaches, they
achieve uniformly superior accuracy without the need for
training datasets (Section 7). In many real settings, it is
unrealistic to expect labeled training sets (e.g., when deploying
an instrument in a new location, or when the ambient conditions
change significantly). We also apply our algorithms to a
collection of real spectra and compare our results with hand-
labeling by domain scientists; they are effective enough
(achieving 93% accuracy in detecting true labels) to be
immediately useful.

2. Problem formalization
 A mass spectrum (or spectrum) is a vector 1[,]rb b b=

K
" ,

where ib R∈ is the signal intensity at mass-to-charge (m/z)
value i . For simplicity, we assume all spectra have the same
‘range’ and ‘granularity’ over the m/z axis; i.e., they have the
same dimension r and the thi element of a spectrum always
corresponds to the same m/z value i . Intuitively, each m/z ratio
corresponds to a particular isotope of some chemical element.
The signature of an ion is a vector 1 2[,]rs I I I=

K " , iI R∈ and

1iI =∑ , representing the distribution of isotopes. iI

is the

proportion of the isotope with m/z value i . A signature library
is a set of known signatures 1 2{ , }nS s s s=

K K K" , in which jsK is the
signature of ion j. Additionally, there may be ions that appear on
particles, and are therefore reflected in mass spectra, but that for
which signatures are not included in the signature library.

 The spectrum b
K

of a particle is a linear combination of the
signatures of ions that it contains. j jj

b w s=∑
K K , where jw is the

quantity of ion j in the particle. The task of mass spectrum
labeling is to find all ions present in the particle as well as their
quantities iw , given an input spectrum. Formally, a label for an
ion with respect to a given spectrum is an ,ion quantity< > pair;
a label for the spectrum is the collection of labels for all ions in

* Profs. Gross and Musicant are at Carleton College, and the remaining
authors are at University of Wisconsin-Madison. The contact email is
raghu@cs.wisc.edu. Work supported by NSF ITR grant IIS-0326328.

the signature library. The task of labeling an input spectrum can
be viewed as a search for a linear combination of ions that best
approximates the spectrum, and the success that is achievable
depends on the extent of unknown ions. In Sections 3 to 5, for
simplicity we assume that the signature library is complete, i.e.,
there are no unknown ions. We evaluate the impact of unknowns
in Sections 6 and 7.
3. When is labeling hard?
 In this section, we formulate the labeling task as solving a set
of linear equations, and then discuss the fundamental challenge
involved: the interference between different combinations of
signatures and the consequent ambiguity in labeling.

3.1. Linear system abstraction
We can represent the signature library 1 2{ , }nS s s s= K K K" as a

matrix 1 2[, ,...,]nA s s s=
K K K , where ksK , the thk column of A , is the

signature of ion k. A spectrum label is an n-dimensional
vector x

K
whose thj component []x j

K
indicates the quantity of ion j

in the particle. Labeling consists of solving the linear
system Ax b=

K K
, 0x ≥
K

. Noticing that Ax b=
KK ()A cx cb⇒ =

K K
 for

any constant c , we can assume without loss of generality that b
K

is normalized (i.e., [] 1

i
b i =∑
K

). By definition of signatures, each
column of A also sums to 1. It follows immediately from this fact
and [] 1

i
b i =∑
K

that [] 1
i
x i =∑ K . The exact quantities of all ions

can be easily calculated by multiplying the quantity distribution
vector xK by the overall quantity of the particle, which is simply
the sum of signal intensities over all m/z values in the original
spectrum before normalization.

3.2. Uniqueness
Definition 1: An input spectrum b

K
is said to have the unique

labeling property with respect to signature library A if there
exists a unique solution 0xK to the system Ax b=

KK , 0x ≥K .

In general, given library A and input spectrum b
K

, neither
existence nor uniqueness of solutions is guaranteed for the above
equation. Our first result identifies a class of libraries for which
every input spectrum is guaranteed to have a unique label.
Theorem 1: Consider signature library 1 2[, ,...,]nA s s s= K K K and a

spectrum b
K

 where 1 2, ,..., ns s sK K K are linearly independent (i.e.,

there is no vector aK = 1 2[, ,...,]na a a such that
1

n
i ii

a s
=∑ K and at

least one 0ia ≠). Then, either b
K

 has the unique labeling property
w.r.t. A, or the system of equations (1) has no solution. □

Even if a signature library does not satisfy the conditions of
Theorem 1, there may still be input spectra b

K
for which the

solution of (1) is unique, e.g. when

,
0 1 1/ 2 1
1 0 1/ 2 0

A b
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K

there is a unique solution [0,1,0]Tx =
K .

 Conversely, for a given spectrum, there will typically be
infinitely many solutions when the signature library does not
satisfy the conditions of Theorem 1. Theorem 2 shows an
important case with infinite solutions.
Theorem 2: Consider the signature library 1 2[, ,...,]nA s s s= K K K and

a spectrum b
K

 where 1 2, ,..., ns s sK K K are not linearly independent. If

there is a solution 1 2[, ,...,]nx x x x=
K

to Ax b=
KK , 0x ≥K such that

1,2,..., 0i n imin x= > , then b
K

 has infinitely many labels. □

3.3. Spectra with unique labeling
We now present our main theoretical result, which is an

elegant characterization of the complete set of spectra that have
the unique labeling property with respect to a given signature
library. We explain the concept through an example and state a
theorem that describes this set.
 Suppose the signature library has only four signatures

1 2 3 4, , ,s s s sK K K K . Figure 2(a) shows the case in which 1 2 4, ,s s sK K K are
linearly dependent. All normalized spectra that can be
represented as a conic combination (that is, a linear combination
of the vectors 1 2 3 4, , ,s s s sK K K K in which the coefficients are
nonnegative) form the triangle 1 2 3 s s s∆ in this example. The
ambiguity of the labeling comes from the linear dependency
among 1 2 4, ,s s sK K K , since 4sK is itself a conic combination of 1s

K
and 2sK . However, any point lying on the line 1 3s s can be uniquely
represented as a conic combination of 1s and 3s . The intuitive
reason for this is clear: Any involvement of a positive fraction of

2sK or 4sK (or both) will lift the point out of the line 1 3s s . Similarly,
the points on the line 2 3s s can be uniquely represented as a conic
combination of 2sK and 4sK . The case in which 4sK combines all
three vectors, 1 2 3, ,s s sK K K is shown in Figure 2(b). In this case, any
point lying on the boundary of triangle 1 2 3s s s∆ can be uniquely
represented as a conic combination of two signatures
among 1 2 3, ,s s sK K K .

 Figure 2: Vector space spanned by signatures

Definition 2: Given a signature library 1 2{ , }nS s s s= K K K" , the
convex hull generated by S is defined as:

1 1
() { | 1, 1, 0, ,1 }n n

i i i i ii i
ch S w s n w w s S i n

= =
= ≥ = ≥ ∈ ≤ ≤∑ ∑K K

The following theorem is a necessary and sufficient condition for
an input spectrum to have a unique label with respect to a given
signature library. The full proof is involved, and is included in
an appendix; we provide a proof outline below.
Theorem 3: The set of spectra with the unique labeling property
w.r.t. library S is the set of points in ch(S) that do not lie in the
interior of the convex span of some affine dependent subset of S.
Further, there is a polynomial time algorithm to test whether a
given spectrum has a unique spectrum w.r.t. a library S.□
4. Handling ambiguity and errors
 In practice, signal intensities are not precisely calibrated, and
the background noise causes measurement errors and introduces
uncertainty. We therefore introduce an error bound E and a
distance function D, and recast the labeling problem in terms of
mathematical programming, as an “exhaustive” feasibility task:

Seek all such that (,) , 0.a D Aa b E a≤ ≥
KK K K

 (1)

(a)

(b)

 Given a library A with n signatures and input spectrum b
K

, the
search space for problem (1) is an n-dimensional space. The
solution space for input spectrum b

K
 is defined as follows:

Definition 3 : Given a signature library A, an input spectrum b
K

and an error bound E with respect to distance function D, the
solution space of spectrum b

K
 is { }| (,) , 0 .a D Aa b E a

b
L = ≤ ≥

KK K KK

It is worth noting that the choice of the distance function D

may affect the complexity of the problem significantly. We use
Manhattan Distance (also known as 1A norm) as our distance
measurement. The Manhattan distance between two vectors is
defined as 1(,) | |i ii

α β α β= −∑
JK JK

A . With Manhattan distance, the
solution set for (2) can be found using the following linear
programming (LP) model:

. .

,
0, 0, 1,2,3,...

ii

i i

min s s t

A b s A b s
s i

α α
α

− ≤ − ≥ −
≥ ≥ =

∑
K KJK JK

 (2)

 We observe that if the distance function is convex, the
solution space of an input spectrum b

K
is convex (see below). We

will explore this property further in Section 5; for now, we note
that Manhattan Distance is a convex distance function.
Theorem 4: If the distance function D has the form

(,) (),D u v d u v= − where d is a convex function, then the solution
space of the search described by Equation (1) is convex. □

4.1. Discretization
 Even if an input spectrum has an infinite number of labels (for
a given signature library) due to the ambiguity, in practice, we do
not need to distinguish between solutions that are very similar. A
natural approach to deal with a continuous space is to discretize it
into grids, so that the number of possible solutions becomes finite.
 Formally, a threshold vector 0 1[, ,...,]dt t t t=

K
 divides each

dimension of the search space into d ranges, where it and 1it + are
the lower bound and upper bound of range i . Given a threshold
vector, we introduce the notion of index vector to represent a
continuous subspace.
Definition 4: Given a threshold vector 0 1[, ,...,]dt t t t=

K
, an index

vector I=[1(l , 1)h ...,(,)],n nl h , ,i i i il h l h Z< ∈ represents a
continuous subspace,

{ | , [] [] [], [] }IS a i t l a i t h a i Ri i= ∀ < ≤ ∈
K KK K K (4)

 Since an index vector represents a unique subspace, we will
refer to a subspace simply by its corresponding index vector
when the context is clear. Using the index vector representation,
we in turn define the notion of cell.
Definition 5: A subspace 1 1 2 2[(,),(,),...,(,)]n nl h l h l h is a cell if

, 1j jj l h∀ + = .

 The cell is the finest granularity of the discretization, which
reflects the degree of detail which users care about. A threshold
vector 0 1[, ,...,]dt t t t=

K
 divides the whole search space into nd

cells, where n is the number of dimensions (which is equivalent
to the total number of signatures). Each cell also corresponds to
a distinct n-dimensional integer vector

1 2[, ,...,],1 ,n i iy y y y y d y Z= ≤ ≤ ∈
K

which defines a subspace Y corresponding to the index vector
1 1 2 2[(, 1),(, 1),...,(, 1)]n ny y y y y y+ + + .

4.2. Optimization model
 We now redefine the task of spectrum labeling as follows:
Find all the cells that intersect the solution space of the input
spectrum. A label of spectrum b

K
 is then simply an integer vector

x
K

 representing a cell that intersects the solution space of b
K

. All
such integer vectors form the label set of spectrum b

K
. Formally,

Definition 6: A vector 1 2(, ,...,),nx x x x=
K

[0... 1]ix d∈ − is a label

of spectrum b
K

 if the subspace defined by the index vector
1 1 2 2[(, 1),(, 1),..., (, 1)]n nX x x x x x x= + + + intersects the solution

space of spectrum b
K

. In the other word, x
K

 is the label if
, s.t (,) , [] [1]i iiD A b E t x t xα α α∃ ≤ < ≤ +
JK JK K K K K K

. b
K

's label set

is { | is a label of }L x x b=
K K K

.

To simplify the discussions in the following sections, we also
introduce the notion of feasible space to describe a subspace that
intersects the solution space of the input spectrum. A feasible
space is a collection of one or more cells. If the feasible space is
a cell, it is also called a label. Table 1 summarizes our notations
and model.

Figure 3 illustrates the concepts discussed in this section.
Suppose there are only two signatures in the signature library.
The whole search space is a two dimensional space ABCD within
which 1 2 3 4S S S S forms the solution space of an input spectrum. It
intersects the cells LFGM and MGHA, each of which corresponds
to a label. Subspace ALFH intersects with the solution space, so
it is a feasible space. MBEG is also a feasible space.

Figure 3: Illustration of concepts

Table 1: Operational definitions of labeling

x
K An n-dimensional integer vector,

0 ix d≤ <

b
K Normalized input mass spectrum
t
K Threshold vector for discretization
d Number of ranges per dimension
L Label set of input spectrum
A Signature library with n signatures
D Distance function

Notations

E Error bound
L ←∅

i

for each possible , s.t.
 D(A ,)
 t[] [] [1],

 if exists such , { }

x Seek a
b E

j a i t j j x
L L x

α

α

≤

< ≤ + =

=

K
JK K

K K K K
JK K

∪

5. Labeling Algorithms
In Section 4, we showed that given n signatures and

discretization granularity d, the search space contains nd cells. A
brute force approach that tests the feasibility of each cell is not
practical, considering that there are hundreds of signatures. In
this section, we propose two algorithms: DFS is a general
algorithm which works for any distance function, and Crawling
algorithm exploits convexity property of distance functions.

5.1. Feasibility test
 Given a subspace S, we use the algorithm shown in Table 2

to test the feasibility of the subspace; this module is the building
block of the later algorithms. Notice that for each test; exactly
one LP call is invoked.

Table 2: Test the feasibility of a subspace

5.2. Depth-First Search (DFS) algorithm

We first state an important property of subspace feasibility
which guarantees the correctness of the DFS algorithm. The
proof is straightforward and is omitted.

Table 3: DFS Algorithm

Theorem 5: Let a spectrum b

K
 and a signature library A with n

signatures be given. If subspace S is feasible, then any
subspace T , with S T⊂ is also feasible.□

The DFS labeling algorithm explores a search tree in which
each node is associated with a particular subspace, and the
subtree rooted at that node corresponds to the subsets of that
subspace. At each node, the algorithm first tests the feasibility of
the subspace for that node. If not feasible, that node and its
subtree are pruned. Otherwise, we select a dimension j that has
not been subdivided to the finest possible granularity in the
subspace of that node, and divide the subspace further along
dimension j. Each smaller space created thus corresponds to a
child of the current node.

In Table 3, the pick_dimension method chooses a dimension
(which is not already at the finest granularity possible) to split the
current subspace and split_subspace divides the current subspace
into smaller pieces along the chosen dimension. Details of these
two methods are discussed in [10].

The correctness of DFS algorithm is proved in [10]. In [7]
we show that the complexity of the DFS algorithm is O(knd)
5.3. Crawling algorithm

DFS is a general algorithm in which we can use any distance
function D, even one that is non-convex. The Crawling algorithm
requires the distance function to be convex and exploits the
connectivity property 1 derived from the convexity of solution
spaces, as described in Theorem 4.
Connectivity Property: Given two labels l1 and ln, there exists a
path of connecting labels (l1 ,…, li-1 , li ,… ln) in which li-1 , li are
adjacent, i.e., differ only in one dimension by 1.

The Crawling algorithm first finds a solution to the linear
system (,) , [] 0D Aa b E a i≤ ≥

KK K by invoking one LP call. The cell
that contains solution is a label and is used as the start point to
explore other connected cells in a breath-first fashion. If the cell
discovered has not been visited before and is a label, its
neighbors will be explored subsequently. Otherwise, it is
discarded and no further exploration will be incurred by it. The
algorithm stops when all labels and their neighbors are visited.
The connectivity property guarantees that all labels are connected
to the first label we found and can be discovered by “crawling”
from that start point. Due to lack of space, we omit details of the
algorithm; see [10], which also contains a correctness proof and
shows that the time and space complexity are O(kn).

Let’s take Figure 3 in Section 4 again as an example. The
input spectrum’s label set contains two labels which are the cells
in shade. The crawling algorithm first finds a solution point.
Suppose it falls in cell LFGM. It then starts from LFGM and
explores its neighbors LBEF, FROG and MGHA. Among the
three, only cell MGHA is a label and will incur further
exploration. It has only two adjacent cells. One is already visited
and the other is not a label. Thereby the algorithm terminates and
outputs LFGM and MGHA as the input spectrum’s label set.

Theorem 6 Given an input spectrum b
K

, a signature database
1 2[, ,...,]nA S S S=
JK JK JK

and a threshold vector 1 2 1[, ,...,]dt t t t +=
K

,

suppose the number of labels for b
K

 is k, the Crawling algorithm
will find the complete set of the labels for input spectrum. □
Theorem 7: Given an input spectrum b

K
, a signature library

1 2[, ,...,]nA s s s= K K K and a threshold vector 0 1[, ,...,]dt t t t=
K

, suppose

the number of labels for b
K

 is k, then the number of LP calls
invoked by the Crawling algorithm is O(kn). The number of
index vectors stored in the queue is O(kn). □

1 Convexity is actually stronger than the connectivity property.

Input: b
K

 Input mass spectrum
 E Error bound
 t

K
 Threshold vector

Output: TRUE if the subspace is feasible, FALSE
otherwise

Is_feasible(subspace S)

1 1 2 2

 s.t.
 (,) (*)
 t[] [] [], for 1,2,...,
 [(,),(,),...,(,)] is the index vector of subspace
if (*) succee

j j

n n

Seek a
D Aa b E

l a j t h j n
l h l h l h S

≤

< ≤ =

K
K K

K K K

ds, return TRUE, otherwise return FALSE

Input: b
K

 Input mass spectrum

 E Error bound
 t

K
 Threshold vector

Output: Label set ()L b
K

Depth_First_Search(subspace S)
 L ←∅
 if not Is_feasible(S) then
 return ∅
 else
 if S is a cell then
 L ← label corresponding to S;
 return L;
 else
 pick_dimension(j)
 { }iS = split_subspace(S, j)
 for each iS
 L ← L∪ Depth_First_Search(iS)
 return L;
Main : Depth_First_Search(whole search space W)

6. Data generation
There is a fundamental difficulty in evaluating algorithms for

labeling mass spectra: manual labeling of spectra (to create
training sets) is laborious, and must additionally be cross-
validated by other kinds of co-located measurements, such as
traditional filter-based or “wet chemistry” techniques. For any
given application, rigorously establishing appropriate “ground
truth” datasets can take months of field-work. In this section, we
describe a detailed approach to synthetic data generation that
allows us to use domain knowledge to create signature libraries
and input particle spectra that reflect specific applications and
instrument characteristics.
 Our generator has two parts: generation of the signature
library, and generation of input spectra. We begin with a
collection of real ion signatures, and select a set of n linearly
independent signatures to serve as “seeds”. New signatures are
generated using a non-negative weighted average of seed
signatures. The set of all generated signatures is partitioned into
two sets: the signature library, and the unknowns.
 The generation of new signatures for the signature library is
done in “groups” as follows, in order to control the degree of
(non-)uniqueness, or ambiguity. Each group consists of two
“base” signatures from the seeds (chosen such that no seed
appears in multiple groups) plus several “pseudo-signatures”
obtained using non-negative weighted averages of these two
signatures. The generated signatures in each group are effectively
treated as denoting new ions in the signature library. Of course,
they do not correspond to real ions at all; rather, they represent
ambiguity in that it is impossible to distinguish them from the
weighted average of base signatures used to generate them when
labeling an input spectrum that contains ions from this group.
Intuitively, the larger the size of a group, the greater the
ambiguity in input spectra that contain ions from the group;
observe that interference can only occur within groups. We create
a total of k groups with i+1 pseudo-signatures in group i.
 The set of n original signatures plus the (3) / 2k k+ ⋅ pseudo-
signatures generated as above constitute our “universe” of all
signatures. Next, we select some of these signatures to be
unknowns, as follows: We randomly select one signature from
each of the k groups; these k signatures are “interfering
unknowns”. We also randomly select u-k seed signatures that
were not used in group generation; these u-k signatures are “non-
interfering unknowns”, giving us a total of u unknowns.
 The second part of our generator is the generation of input
spectra. An input spectrum is generated by selecting m signatures
from the universe of signatures and adding them according to a
weighting vector wK . Ambiguity and unknowns are controlled by
the careful selection of signatures that contribute to the spectrum,
and the input weighting vector controls the composition of the
spectrum as well as the contribution of unknowns. We observe
that the effect of many unknowns contributing to an input
spectrum can be simulated by aggregating them into a single
unknown signature with an appropriate weighting vector;
accordingly, we use at most a single unknown signature. Table 4
summarizes the parameters for spectrum generation.

Table 4: Parameters used for spectrum generation

 We begin by randomly selecting two signatures from group q.
Then, if unknowns are desired in the generated spectrum (o=1),
we choose either the qth unknown signature, or a randomly
selected non-interfering unknown signature, depending on
whether or not the unknown is desired to interfere with known
ions in the spectrum (v = 1 or 0). The contribution of unknowns
is controlled by the last component of the weighting vector. Next,
we randomly select signatures from the signature library that do
not belong to any of the k “groups” to get a total of m signatures.
These signatures are linearly independent seeds, and thus the
ambiguity of the generated spectrum will depend solely on the
first 2 (or 3, if an interfering unknown is chosen) signatures.
 Finally, we select values for m random variables following a
normal distribution whose means are given by the weighting
vector of arity m. The values for these variables are used as the
weights wi to combine the m signatures:

1

m
j jj

w s
−∑ . (We note that

when an unknown signature is used in the generation, the last
element of the weighting vector is reset to be the relative quantity
of the unknown signature and the whole weighting vector is
normalized to sum up to 1.)
 We account for noise by simply adding a noise value (a
random variable following a normal distribution) to each
component (i.e., m/z position) of the generated spectrum.
7. Experimental results
 We now describe experiments to evaluate our labeling
algorithms with respect to both quality and labeling speed. To
give the reader an idea of the speed, we observed an average
processing rate of about one spectrum per second when we ran
our algorithms on over 10,000 real mass spectra collected using
an ATOFMS instrument in Colorado and Minnesota; this is
adequate for some settings, but not all, and further work is
required. Speed and scalability are not the focus of this paper, but
are addressed in [7], and extensive experiments are reported. We
also tested the accuracy of our labeling algorithm against a small
set of manually labeled spectra; all were correctly labeled by the
algorithm. Admittedly, this is not an extensive test, but we are
limited by the fact that manual labeling is a tedious and costly
process. (This underscores the importance of not requiring
training datasets.)
 In this section, we therefore evaluate our algorithms using the
data generator from Section 6; this approach also allows us to
study the effect of ambiguity, unknown signatures and noise
levels in a controlled fashion. For comparison, we also evaluated
machine learning (ML) algorithms. However, the reader should
note that our algorithms can label input spectra given only the
signature library, whereas the ML approaches require extensive
training datasets, which is unrealistic with manual labeling. In
addition, the ML algorithm ignores equivalent alternatives and
only generates one label. Nonetheless, we propose two different
quality measures and include the comparison for completeness,
and to motivate a promising direction for future work, namely the
development of hybrid algorithms that combine the strengths of
these approaches.

m number of signatures
q number of groups
wK vector for the weight of the signatures
o whether the unknown signature is used
g average amount of noise

7.1. Machine learning approach
 Our ML algorithm builds upon WEKA classifiers [18]. For
each signature in the signature library, we train a classifier to take
a given input spectrum and output a presence category (absent,
uncertain or present), i.e., to detect whether or not the ion
represented by the signature is present in the particle represented
by the spectrum. The predictive attributes are the (fixed set of)
m/z locations, taking on as values the signal intensities at these
locations in the input spectrum. To label a spectrum, we simply
classify it using the classifiers for all signatures in the library.
When we are only interested in the presence of a subset of ions,
of course, we need only train and run the classifiers for the
corresponding signatures. We evaluated four types of classifiers:
Decision Trees (J48), Naïve Bayes, Decision Stumps, and Neural
Networks. Decision Trees consistently and clearly outperformed
the other three, and we therefore only compare our algorithms
against this approach in the rest of this section.

7.2. Datasets
 The (common) dimension of all signatures and spectra is set to
be 255. We used n=78 base signatures of real ions, and generated
k=5 groups containing 2 to 6 pseudo-signatures respectively.
Including the original 78, we thus obtained 98 signatures, 15 of
which were withheld as unknown; the remaining 83 comprised
the signature library. For generating input spectra, we set the
number of signatures used for spectrum generation to be m=10.
The relative proportion of these m signatures was controlled by
the weighting vector [0.225, 0.2, 0.2, 0.1, 0.1, 0.06, 0.06, 0.03,
0.01, 0.01].
 We generated five testing datasets with controlled ambiguity,
unknown signature and noise levels. Each dataset contains
several files, each of which contains 1,000 spectra generated by
using the same set of parameter values. Dataset 1 is designed to
test the effect of noise. It consists of 10 files. Each file
corresponds to a distinct noise level from 0% to 360% of a preset
error bound, which is 0.01 of the total intensity. No ambiguity or
unknown signature is involved in this dataset. Dataset 2 tests the
effect of ambiguity. It consists of 5 files corresponding to 5
ambiguity levels. Dataset 3 has no noise or ambiguity, but
contains some non-interfering unknown signatures. This dataset
contains ten files, with the weight on the unknown signature
varying from 0% to 180% of the preset error bound. Dataset 4 is
identical to Dataset 3 except that the unknown signatures selected
are interfering unknowns. Dataset 5 is designed to test the
combined effect of noise and ambiguity. Five ambiguity degrees
used in Dataset 2 and five noise levels selected from the 10 noise
levels used in Dataset 1 result in 25 different combinations of
noise and ambiguity, and 25 files are generated for each such
combination. The discretization criteria used for all the datasets
above is controlled by a threshold vector [0, 0.08, 0.18, 1], which
indicates absent, uncertain and present respectively.

Figure 4: Indistinguishable spectrum labels

7.3. Labeling quality
 Given a particle, consider the “ideal” version of its spectrum
obtained by eliminating noise and unknowns, and is therefore
strictly the weighted sum of known ion signatures present in the
particle. Even such an ideal mass spectrum might not have

unique labels. The spectrum shown in Figure 4 might represent a
particle that contains ions A and B, or a particle that contains C
and D. Given only the input spectrum, the combinations AB and
CD are mathematically indistinguishable, and should be
presented to domain experts for further study. The complete set
of such “indistinguishable spectrum labels” for the “ideal”
version of an input spectrum is the best result we can expect from
labeling; we call each label in this set a correct label. Intuitively,
it is the set of all feasible combinations of ions in the particle.
This is exactly the label set of the ideal spectrum defined in
Section 4 (with the error bound set to 0). By Theorem 7, our
algorithms generate this label set when no unknown or noise is
present, i.e., the ideal version is the given input spectrum itself.
However, as noise and unknowns are added, the labels found by
our algorithm will no longer be the same as the desired set of all
correct labels.
 Our first proposed metric comparing the result of a labeling
algorithm with the set of all correct labels. This metric consists of
two ratios: the hit ratio and false ratio. The hit ratio is the
percentage of correct labels in the result set of the labeling
algorithm. The false ratio is the proportion of labels in the result
set that are not correct labels. Formally, let the label set of a
particle’s ideal spectrum be TL and let the set of labels found by
a labeling algorithm for the particle’s real spectrum under the
presence of noise and unknowns be OL :

| | / | |T O THit Ratio L L L= ∩ | | / | |O T OFalse Ratio L L L= −

Experiments under this metric will be called full labeling tests,
and are presented in Section 7.3.1.
 Our second metric relaxes the requirement of finding the
correct combinations of ions, and focuses on the proportion of
individual ions whose presence or absence is correctly classified.
Given a collection of interesting ions, we aggregate the set of
correct spectrum labels to obtain a set of ion labels TIL as follows:
An ion of interest is marked present if all correct labels mark it as
present, absent if all correct labels mark it as absent, and marked
uncertain in all other cases. Similarly, we can obtain a set of ion
labels OIL from the result set of the labeling algorithm. Our
second metric consists of two ratios based on these ion labels:

| | / | |T O TPartial Hit Ratio IL IL IL= ∩
| | / | |O T OPartial False Ratio IL IL IL= −

Partial hit ratio is similar to hit ratio, and describes the
percentage of ions that are correctly labeled, while partial false
ratio is the proportion of ions that are incorrectly labeled.
Experiments under this second metric will be called partial
labeling tests, and are presented in Section 7.3.2.

Figure 5: Effect of noise

w/o ambiguity
Figure 6: Effect of

noise with ambiguity

Spectrum

Ion signature A

Ion signature B

Ion signature C

Ion signature D

Figure 7: Effect of non-
interfering unknown

Figure 8: Effect of
interfering unknown

 It is worth noting that for any given spectrum, our algorithms
will generate exactly the same result. Therefore, for quality
evaluation, we simply refer to them as “our algorithm” or the
“LP” algorithm, since they both build upon linear programming.
7.3.1. Full labeling tests In the following graphs, each data point
for our algorithm is the average of results on 1000 spectra, while
each data point for the ML algorithm is the result of 5-fold cross
validation on the same dataset. Figure 5 shows the result on
Dataset 1, which contains no ambiguity or unknowns. Even in
this simple case, the ML algorithm performs poorly. Its hit ratio
is close to zero while the false ratio is close to one. In contrast,
our algorithm shows great strength in identifying a possible
combination of ions to explain the spectrum. The hit ratio
remains almost perfect when the noise is within 180% of error
bound, but drops sharply when noise grows above that threshold.
This shows a limitation of our algorithm: the error bound is the
only component that accounts for noise, and our results are
sensitive to the choice of the error bound relative to noise levels.
While the error bound helps in accounting for noise, it also
introduces a degree of freedom that allows incorrect labels to be
included. Surprisingly, the false ratio, which measures the
percentage of incorrect labels in the result, actually goes down as
the noise level increases; the noise intuitively takes up the slack
introduced by error bound. This observation suggests that we
might be able to automatically tune the error bound by estimating
the noise level. Figure 6 shows the results on Dataset 5, which
contains both ambiguity and noise. As we can see, the already
low hit ratio of the ML algorithm drops further, essentially to
zero, and the false ratio goes over 95%. Our algorithm performs
consistently well in Figure 6, demonstrating its ability to handle
ambiguity even in the presence of noise. Figures 7 and 8
summarize the experimental results on Datasets 3 and 4, which
show the effect of unknowns. Intuitively, if the unknown ion is
non-interfering, it acts like additional noise at some m/z positions,
which makes it harder to compensate for. The hit ratio of our
algorithm drops sharply when the non-interfering unknown
proportion exceeds the error bound. The spike in the false ratio at
the very end is an artifact caused by the fact that the number of
labels found is reduced to one essentially, and that one is
incorrect. The effect of interfering unknowns is more interesting.
While it raises the false ratio as more and more unknowns are
added, as expected, surprisingly, it also helps the hit ratio
(because it can be interpreted as some linear combination of
known signatures that effectively increases the quantity of the
known signatures).
7.3.2 Partial labeling tests We run the exact same set of
experiments as for the Full Labeling Test, but apply the second
metric. The ten signatures of interest are set to be those used to
generate the spectrum, so that ambiguity w.r.t. the signatures of
interest is still under control. Figures 9 and 10 illustrate the effect

of noise and unknowns combined with ambiguity. The figures
only show hit ratio, since in our setting the false ratio is just 1-
hit ratio. In both graphs, the triangle series show the hit ratio of
our algorithm and the square/diamond series represent the ML
algorithm. Solid lines represent the results on datasets with no
ambiguity while dotted lines represent a dataset with ambiguity.
The first observation is that the ML algorithm achieves decent
performance under this metric, although it is still uniformly
dominated by the LP algorithm. The performance degradation of
the ML algorithm from diamond curves to square curves in both
graphs again shows the weakness of the ML approach, namely its
inability to handle ambiguity. Both noise and unknowns have a
similar effect on our algorithm as in the full labeling tests. On the
other hand, the almost horizontal hit ratio curves for the ML
algorithm illustrate an interesting point: the ML algorithm tends
to be less sensitive to unknowns than our algorithm. This is
because our algorithm assumes complete knowledge of ion
signatures and tries to combine all signatures simultaneously,
whereas the ML algorithm simply looks at one ion at a time.
 Overall, our algorithm clearly beats the ML algorithm in terms
of labeling quality, even in partial labeling tests. In addition, the
ML algorithm needs substantial training data. This is not realistic
to get at all. However, the ML algorithm does show promise in
partial labeling, which suggests a promising research direction,
namely a hybrid algorithm that combines the speed of ML and
the ambiguity-handling ability of our LP-based approach.

Figure 9: Effect of noise Figure 10: Effect of

unknowns

Figure 11: Effect of

ambiguity on label time
Figure 12: Scalability w.r.t

#signatures
7.3.3 Labeling speed We ran efficiency tests on the five datasets
described in Section 7.2. Results show that the presence of noise
and unknown signature does not affect the performance of our
algorithms much, unless the noise or weight on the non-
interfering unknown signature is significantly larger than the
error bound. When no ambiguity is present, labeling takes about
one second for both DFS and Crawling algorithms. However, as
more ambiguity is included and the label set size increases
sharply, the performance of our algorithms degrades significantly.
Figure 11 shows the running time of our algorithms on Dataset 2,
which contains five files of spectra with five different degrees of
ambiguity. Series 1 and 2 show the performance of DFS and
Crawling algorithms. The Crawling algorithm exploits the
convexity of the distance function and runs slightly faster than
DFS, but both become much slower as ambiguity is increased.

This is mainly due to the dramatic increase in the number of
correct labels. The ML algorithm is much faster than our
algorithms, but it is worth noting that when no ambiguity is
involved and the number of correct labels is small, the running
time of our algorithm is almost the same as for ML. In addition,
the training time of the ML approach is not reflected at all in
these graphs. Further, when we are only interested in detecting a
small number of signatures, we can revise our DFS algorithm to
only pick the signatures of interest and do partial labeling. This
optimization greatly speeds up DFS, to about 100 spectra per
second. Figure 12 summarizes the results of algorithm scalability
with respect to the number of signatures in the signature library.
7.4. Labeling spectra from a real application

We now present results on data from a real application,
comparing our labeling results with manual labeling by a domain
expert. The spectra in our experiment come from particles
collected in a diesel engine test. Most of the ions in our library
are inorganic or simple organic. The signatures of most of ions
have a single major peak, i.e., for signature {s =

K
1 2, ,...}I I , there

exist iI such that i jI I� , for all j i≠ . Hence, most of the
ambiguity in the signature library comes from ions which have
their major peaks at the same m/z value, although some of the
signatures, such as Hg and TEANO3, do have multiple peaks.

We used both our algorithms to label a set of 85 input
spectra, with identical results. The labels were evaluated by a
chemist who is studying the spectra. In this specific application,
the goal is to detect all present ions rather than to quantify their
abundance. Our algorithms performed remarkably well, correctly
detecting the ions in 93% of the spectra.

When our labeling algorithms failed, it was due to one of
three reasons. First, there are ions which exist in the spectra but
whose signatures are not included in the signature library. Our
algorithms can tolerate some degree of “unknown” ions, in that
unknown and “uninteresting” ions do not (usually) prevent us
from identifying ions of interest (i.e., in the library). However, if
these ions are of interest to the scientist and must be identified
when present, we require that they be included in the signature
library. Overcoming this limitation requires us to detect certain
“missing” signatures by comparing labels from multiple spectra,
and is a direction for future work; such a step is currently not
included in our model. Even when we do include the correct
label as an alternative, it is important to be able to identify the
correct label and to distinguish it from the alternatives that arise
due to ambiguity. Again, further work is needed in this area.

The second problem is related to the ambiguity of the
signature library. Some ions in the library have exact the same
signature. It is impossible to distinguish these ions without
integrating domain knowledge. This is another important
direction for improvement.

The third problem with our labeling result is peak “drifting”.
Due to the interaction between different ions in the chamber of
the mass spectrometer, the peak in the spectrum is actually not a
spike that stands on one unique m/z value. Instead, it is a curve
that is distributed over multiple m/z values. Our current model is
sensitive to this type of error, and additional work is needed.

8. Related work and conclusion
Methods of categorizing aerosol particles using clustering and

neural networks have been proposed [1,12,9,16], but none of
them deals with the labeling problem directly. The linear
programming method used in this paper is standard, see, e.g., [13].
Related nonlinear or integer programming tasks arising from the

use of Euclidean distance or discretization are also well studied in
the optimization community [6,13,19]. Recent work on
knowledge-based optimization and machine learning [8,17] are
promising extensions to the framework we propose. Machine
learning methods such as clustering [5,20] can be applied to our
basic linear programming approach by helping identify better
initial points and optimization constraints.

Our future work includes finding better labeling algorithms,
utilizing domain knowledge in the labeling process, discovering
unknown signatures and validating our algorithm on real data.
Interested readers can check the technical report [10] for detailed
discussion.

9. References
[1] Agrawal, R., Imielinski, T., Swami, A., Mining Associations between
Sets of Items in Massive Databases, Proc. ACM-SIGMOD, 1993.
[2] Agrawal, R., Faloutsos, C. and Swami, A. Efficient Similarity Search
in Sequence Databases. FODO, 1993
[3] Agrawal, R., Mannila, H., et. al., Fast Discovery of Association Rules,
Advances in Knowledge Discovery and Data Mining, 1995.
[4] Agrawal, R. and Srikant R.: Fast Algorithms for Mining Association
Rules, Proc. VLDB, 1994
[5] Basu, Sugato, Banerjee, Arindam and Mooney, Raymond J., Semi-
supervised Clustering by Seeding. Proc. ICML, 2002.
[6] Benson, Steven J., More, Jorge J, A Limited Memory Variable Metric
Method, in Subspaces and Bound Constrained Optimization Problems,
2001.
[7] Chen, L., Huang, Z. and Ramakrishnan, R., Cost-Based Labeling of
Groups of Spectra, Proc. ACM-SIGMOD, 2004.
[8] Fung, G., Mangasarian, O.L. and Shavlik, J., Knowledge-Based
Support Vector Machine Classifiers. Proc. NIPS 2002.
[9] Gard, E., Mayer J.E., et. al., Real-Time Analysis of Individual
Atmospheric Aerosol Particles: Design and Performance of a Portable
ATOFMS, Anal. Chem. 1997, 69, 4083-4091.
[10] Huang, Z., Chen, L., et. al., Spectrum Labeling: Theory and Practice,
2004, Technical Report, UW-Madison.
[11a] Jayne, J.T., D.C. Leard, X. Zhang, et. al., Development of an
aerosol mass spectrometer for size and composition analysis of submicron
particles, Aerosol Sci. Tech.., 2000, 33, 49-70.
[11] McCarthy, J., Phenomenal data mining, In Communications of the
ACM 43 (8), 2003
[12] Noble, C.A. and Prather K.A., Real-time Measurement of Correlated
Size and Composition Profiles of Individual Atmospheric Aerosol
Particles. Environ. Sci. Technol, 1996
[13] Nocedal, J. and Wright, S.J., Numerical Optimization, Springer, 1st
edition, 1999.
[14] Prather, K.A., Nordmeyer, T., and Salt, K. Real-time
Characterization of Individual Aerosol Particles Using ATOFMS. Anal.
Chem., 1994; 66, 1403-1407.
[15] Srikant, R. and Agrawal, R., Mining Quantitative Association Rules
in Large Relational Tables, Proc ACM-SIGMOD, 1996.
[16] Suess, D.T. and Prather K.A., Mass Spectrometry of Aerosols,
Chemical Reviews, 1999, 99, 3007-3035.
[17] Towell, G.G. and Shavlik J., Knowledge-Based Artificial Neural
Networks. Artificial Intelligence, 1994.
[18] Witten, Ian H. and Frank, Eibe, Practical Machine Learning Tools
and Techniques with Java Implementation, Morgan Kaufmann, 1999.
[19] Wolsey, L., Integer Programming, John Wiley, 1998.
[20] Zhang, T., Ramakrishnan, R. and Livny M., BIRCH: An Efficient
Data Clustering Method for Very Large Databases, Proc. ACM-SIGMOD,
1996.

